• Title/Summary/Keyword: machine-learning

검색결과 5,627건 처리시간 0.039초

차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구 (Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis)

  • 박혜진;최재석;조상구
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.121-142
    • /
    • 2023
  • 수입식품의 수입 건수와 수입 중량이 꾸준히 증가함에 따라 식품안전사고 방지를 위한 수입식품의 안전관리가 더욱 중요해지고 있다. 식품의약품안전처는 통관단계의 수입검사와 더불어 통관 전 단계인 해외제조업소에 대한 현지실사를 시행하고 있지만 시간과 비용이 많이 소요되고 한정된 자원 등의 제약으로 데이터 기반의 수입식품 안전관리 방안이 필요한 실정이다. 본 연구에서는 현지실사 전 부적합이 예상되는 업체를 사전에 선별하는 기계학습 예측 모형을 마련하여 현지실사의 효율성을 높이고자 하였다. 이를 위해 통합식품안전정보망에 수집된 총 303,272건의 해외제조가공업소 기본정보와 2019년도부터 2022년 4월까지의 현지실사 점검정보 데이터 1,689건을 수집하였다. 해외제조가공업소의 데이터 전처리 후 해외 제조업소_코드를 활용하여 현지실사 대상 데이터만 추출하였고, 총 1,689건의 데이터와 103개의 변수로 구성되었다. 103개의 변수를 테일유(Theil-U) 지표를 기준으로 '0'인 변수들을 제거하였고, 다중대응분석(Multiple Correspondence Analysis)을 적용해 축소 후 최종적으로 49개의 특성변수를 도출하였다. 서로 다른 8개의 모델을 생성하고, 모델 학습 과정에서는 5겹 교차검증으로 과적합을 방지하고, 하이퍼파라미터를 조정하여 비교 평가하였다. 현지실사 대상업체 선별의 연구목적은 부적합 업체를 부적합이라고 판정하는 확률인 검측률(recall)을 최대화하는 것이다. 머신러닝의 다양한 알고리즘을 적용한 결과 Recall_macro, AUROC, Average PR, F1-score, 균형정확도(Balanced Accuracy)가 가장 높은 랜덤포레스트(Random Forest)모델이 가장 우수한 모형으로 평가되었다. 마지막으로 모델에 의해서 평가된 개별 인스턴스의 부적합 업체 선정 근거를 제시하기 위해 SHAP(Shapley Additive exPlanations)을 적용하고 현지실사 업체 선정 시스템에의 적용 가능성을 제시하였다. 본 연구결과를 바탕으로 데이터에 기반한 과학적 위험관리 모델을 통해 수입식품 관리체계의 구축으로 인력·예산 등 한정된 자원의 효율적 운영방안 마련에 기여하길 기대한다.

1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발 (Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models)

  • 이준학;이하늘;강나래;황석환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제56권5호
    • /
    • pp.311-323
    • /
    • 2023
  • 집중호우, 홍수 및 도시침수와 같은 재해를 저감시키기 위하여 자연 재난으로 인한 재해의 발생 여부를 사전에 파악하는 것은 중요하다. 현재 국내는 기상청에서 운영하고 있는 호우주의보 및 호우경보를 발령하고 있지만, 이는 전국에 일괄적인 기준으로 적용하고 있어 사전에 호우로 인한 피해를 명확하게 인지하지 못하고 있는 실정이다. 따라서, 일괄된 기준을 지역적 특성을 반영한 호우특보 기준으로 재설정하고 1시간 후에 강우로 발생할 수 있는 피해의 규모를 예측하고자 하였다. 연구 대상 지역으로는 호우피해가 가장 빈번하게 발생하였던 경기도 지역으로 선정하였고, 강우량 및 호우 피해액 자료를 활용하여 지역적 특성을 고려한 시간단위 재해 유발 강우를 설정하였다. 강우에 의한 호우피해 발생 여부를 예측하는 모형을 개발하기 위해 재해 유발 강우 및 강우 자료를 활용하였으며, 머신러닝 기법인 의사 결정 나무 모형과 랜덤 포레스트 모형을 활용하여 분석 및 비교하였다. 또한 1시간 후의 강우를 예측하기 위한 모형으로는 장단기 메모리, 심층 신경망 모형을 활용하여 분석 및 비교하였다. 최종적으로 예측 모형을 통해 예측된 강우를 훈련된 분류 모형에 적용하여 1시간 후 호우에 의한 규모별 피해 발생 여부를 예측하였고, 이를 1ST-모형이라고 정의하였다. 본 연구를 통해 개발된 1ST-모형을 활용하여 예방 및 대비 차원의 재난관리를 실시한다면 호우로 인한 피해를 저감하는데 기여 할 수 있을 것으로 판단된다.

위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가 (Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning)

  • 김민주;박정우;박주현;박지수;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.481-493
    • /
    • 2023
  • 고밀도 도심지의 열섬현상이 도시 기온을 더 높이고 있으며 이로부터 대기오염 악화, 냉방 에너지 소비 증가 및 온실가스 배출 증대와 같은 부정적 영향들이 발생한다. 녹지의 추가 확보가 어려운 도시 환경에서 옥상녹화는 효율적인 온실가스 감축 전략이다. 본 연구에서는 열섬현상 현황 분석에서 더 나아가 고해상도 위성자료 및 공간정보를 활용하여 연구 지역 내 옥상녹화 가용면적 산정 후 옥상녹화가 가져오는 온도 분포 예측을 통한 열섬현상 완화도 및 이산화탄소 흡수량 평가를 수행하였다. 이를 위해 WorldView-2 위성자료를 활용하여 부산시 도시열섬 지역의 기존 토지피복을 분류하고 머신러닝 기법을 적용하여 옥상녹화 전 후 온도 분포 예측 모델을 개발하였다. 옥상녹화 면적 변화에 따른 열섬현상 완화도를 평가하기 위해 랜덤포레스트 기법을 통해 온도가 종속변수인 온도 분포 예측모델을 구축하였고, 이 과정에서 랜덤포레스트 모델의 훈련자료로 사용될 고해상도 지표 온도 도출을 위해 Google Earth Engine을 활용하여 Landsat-8과 Sentinel-2 위성자료를 융합하는 다중회귀모델을 적용하였다. 또한, 옥상녹화용 초본식생별 이산화탄소 흡수량을 기반으로 녹화 면적에 따른 이산화탄소 흡수량을 평가하였다. 연구 결과를 통해 개발된 위성자료 활용 도시 열섬현상 평가 및 랜덤포레스트 모델 기반 온도 분포 예측 기술은 도시열섬 취약 지역에 확대 적용이 가능할 것으로 기대된다.

GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발 (Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data)

  • 유하영;서명석
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1779-1790
    • /
    • 2023
  • 위성 자료의 성능이 크게 개선됨에 따라 최근에는 위성을 이용하여 광범위한 영역에 대한 실시간 안개 탐지 알고리즘들이 개발되고 있다. 한반도 주변을 관측하는 기상위성 중 관측주기가 10분으로 시간해상도가 가장 우수한 GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI)는 공간해상도가 500 m이다. 반면 GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II)는 해상도가 250 m지만, 1시간 주기로 관측하고 가시채널만 보유하고 있다. 따라서 본 연구에서는 한반도 주변에서 발생하는 안개를 10분 및 250 m 해상도로 탐지하기 위해 GK2AB 융합 안개 탐지 알고리즘(Fog Detection Algorithm, FDA)인 GK2AB FDA를 개발하였다. GK2AB FDA는 세 파트로 구성된다. 첫 번째로 현업 운용중인 GK2A 안개 탐지 알고리즘(GK2A FDA)으로 10분 및 500 m 해상도로 안개를 탐지한다. 두 번째 단계에서는 두 위성 자료 간 시공간 일치, 태양천정각과 파장역 차이를 보정한 GK2A normalized visible (NVIS)의 10분 변화량을 이용하여 GK2B NVIS를 10분 간격으로 외삽한다. 마지막 단계에서는 외삽된 GK2B NVIS, 태양천정각, GK2A FDA 산출물 등을 입력자료로 기계학습(의사결정나무)을 이용하여 개발된 GK2AB FDA로 지리적위치에 따라 안개를 탐지(250 m, 10분)한다. GK2AB FDA의 훈련에는 6개 사례, 검증에는 4개 사례가 이용되었다. GK2AB FDA의 정량적 검증에는 지상관측 시정, 풍속 그리고 상대습도 자료를 이용하였다. GK2AB FDA는 GK2A FDA에 비해 공간해상도가 4배 증가함에 따라 안개 및 비안개 화소가 보다 자세히 구분되었다. 또한 검증방법에 관계없이 GK2A FDA에 비해 probability of detection (POD)은 높고 Hanssen-Kuiper Skill score (KSS)는 높거나 비슷함을 보여 안개 탐지 수준이 개선된 것으로 보인다. 하지만 일부 사례에서는 GK2AB FDA의 false alarm ratio (FAR)와 Bias가 크게 나타나 안개를 과대탐지하는 문제를 보이고 있다.

3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발 (Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals)

  • 정찬혁;김상윤;허성구;;신민혁;유창규
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.523-541
    • /
    • 2023
  • 3D 프린터의 활용이 높아짐에 따라 발생하는 화학물질에 대한 노출 빈도가 증가하고 있다. 그러나 3D 프린팅 발생 화학물질의 독성 및 유해성에 대한 연구는 미비하며, 분자 구조 데이터의 결측치로 인해 in silico 기법을 사용한 독성예측 연구는 저조한 실정이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 결측치를 보간하여 3D 프린팅의 독성 및 유해성을 예측한 Data-centric QSAR 모델을 개발하였다. 먼저 MissForest 알고리즘을 사용해 3D 프린팅으로 발생되는 유해물질의 분자표현자 결측치를 보완하였으며, 서로 다른 4가지 기계학습 모델(결정트리, 랜덤포레스트, XGBoost, SVM)을 기반으로 Data-centric QSAR 모델을 개발하여 생물 농축 계수(Log BCF)와 옥탄올-공기분배계수(Log Koa), 분배계수(Log P)를 예측하였다. 또한, 설명 가능한 인공지능(XAI) 방법론 중 TreeSHAP (SHapley Additive exPlanations) 기법을 활용하여 Data-centric QSAR 모델의 신뢰성을 입증하였다. MissForest 알고리즘 기반 결측지 보간 기법은, 기존 분자구조 데이터에 비하여 약 2.5배 많은 분자구조 데이터를 확보할 수 있었다. 이를 바탕으로 개발된 Data-centric QSAR 모델의 성능은 Log BCF, Log Koa와 Log P를 각각 73%, 76%, 92% 의 예측 성능으로 예측할 수 있었다. 마지막으로 Tree-SHAP 분석결과 개발된 Data-centric QSAR 모델은 각 독성치와 물리적으로 상관성이 높은 분자표현자를 통하여 선택함을 설명할 수 있었고 독성 정보에 대한 높은 예측 성능을 확보할 수 있었다. 본 연구에서 개발한 방법론은 다른 프린팅 소재나 화학공정, 그리고 반도체/디스플레이 공정에서 발생 가능한 오염물질의 독성 및 인체 위해성 평가에 활용될 수 있을 것으로 사료된다.

다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산 (Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence)

  • 정시훈;추민기;임정호;조동진
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.707-723
    • /
    • 2022
  • 위성기반 해수면온도는 광역 모니터링이 가능한 장점이 있지만, 다양한 환경적 그리고 기계적 이유로 인한 시공간적 자료공백이 발생한다. 자료공백으로 인한 활용성의 한계가 있으므로, 공백이 없는 자료 생산이 필수적이다. 따라서 본 연구에서는 한반도 주변 해역에 대해 극궤도와 정지궤도 위성에서 생산되는 해수면온도 자료를 두 단계의 기계학습을 통해 융합하여 4 km의 공간해상도를 가지는 일별 해수면온도 합성장을 만들었다. 첫번째 복원 단계에서는 Data INterpolate Convolutional AutoEncoder (DINCAE) 모델을 이용하여 다종 위성기반 해수면온도 자료를 합성하여 복원하였고, 두번째 보정 단계에서는 복원된 해수면온도 자료를 현장관측자료에 맞춰 Light Gradient Boosting Machine (LGBM) 모델로 학습시켜 최종적인 일별 해수면온도 합성장을 만들었다. 개발된 모델의 검증을 위해 복원 단계에서 무작위 50일의 자료 중 일부분을 제거하여 복원한 뒤 제거된 영역에 대해 검증하였으며, 보정 단계에서는 Leave One Year Out Cross Validation (LOYOCV) 기법을 이용하여 현장자료와의 정확도를 검증하였다. DINCAE 모델의 해수면온도 복원 결과는 상당히 높은 정확도(R2=0.98, bias=0.27℃, RMSE=0.97℃, MAE=0.73℃)를 보였다. 두번째 단계의 LGBM 보정 모델의 정확도 개선은 표층 뜰개 부이와 계류형 부이 현장자료와의 비교에서 모두 상당한 향상(RMSE=∆0.21-0.29℃, rRMSE=∆0.91-1.65%, MAE=∆0.17-0.24℃)을 보여주었다. 특히, 모든 현장 자료를 이용한 보정 모델의 표층 뜰개 부이와의 정확도는 동일한 현장 자료가 동화된 기존 해수면온도 합성장보다 나은 정확도를 보였다. 또한 LGBM 보정 모델은 랜덤포레스트(random forest)를 사용한 선행연구에서 보고된 과적합의 문제를 상당부분 해결하였다. 보정된 해수면온도는 기존의 초고해상도 해수면온도 합성장들과 유사한 수준으로 수온 전선과 와동 등의 중규모 해양현상을 뚜렷하게 모의하였다. 본 연구는 다종위성 자료와 기계학습 기법을 사용해 시공간적 공백 없는 고해상도 해수면온도 합성장 제작 방법을 제시하였다는 점에서 가치가 있다.

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.

LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측 (Prediction of Urban Flood Extent by LSTM Model and Logistic Regression)

  • 김현일;한건연;이재영
    • 대한토목학회논문집
    • /
    • 제40권3호
    • /
    • pp.273-283
    • /
    • 2020
  • 기후변화의 영향으로 국지성 및 집중호우에 대한 발생 가능성이 높아지는 시점에서 과거에 침수피해를 입은 도시 유역에 대하여 실제 호우에 대한 침수 양상을 예측하는 것은 중요하다. 이에 수치해석 기반 프로그램과 함께 기계학습을 이용한 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM 신경망은 일련의 자료를 분석하는데 유용하지만, 딥 러닝을 수행하기 위하여 충분한 양의 자료를 필요로 한다. 그러나 단일 도시유역에 홍수를 일으킬 강우가 매년 일어나지 않기에 많은 홍수 자료를 수집하기에는 어려움이 있다. 이에 본 연구에서는 대상 유역에서 관측되는 강우 외에 전국 단위의 실제 호우를 예측 모형에 반영하였다. LSTM (Long Short-Term Memory) 신경망은 강우에 대한 총 월류량을 예측하기 위하여 사용되었으며, 목표값으로 SWMM (Storm Water Management Model)의 유출 모의 결과를 사용하였다. 침수 범위 예측을 위해서는 로지스틱 회귀를 사용하였으며, 로지스틱 회귀 모형의 독립 변수는 총 월류량이며 종속 변수는 격자 별 침수 발생 유무이다. 침수 범위 자료는 SWMM의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 통해 수집하였다. LSTM의 매개변수 조건에 따라 총 월류량 예측 결과를 비교하였다. 매개변수 설정에 따른 4가지의 LSTM 모형을 사용하였는데, 검증과 테스트 단계에 대한 평균 RMSE (Root Mean Square Error)는 1.4279 ㎥/s, 1.0079 ㎥/s으로 산정되었다. 최소 RMSE는 검증과 테스트에 대하여 각각 1.1656 ㎥/s, 0.8797㎥/s 으로 산정되었으며, SWMM모의 결과를 적절히 재현할 수 있음을 확인하였다. LSTM 신경망의 결과와 로지스틱 회귀를 연계하여 침수 범위 예측을 수행하였으며, 침수심 0.5m 이상을 고려하였을 때에 최대 침수면적 적합도가 97.33 %으로 나타났다. 본 연구에서 제시된 방법론은 딥 러닝에 기반하여 도시 홍수 대응능력을 향상 시키는데 도움이 될 것으로 판단된다.

다중 웹 데이터와 LSTM을 사용한 전염병 예측 (Prediction of infectious diseases using multiple web data and LSTM)

  • 김영하;김인환;장백철
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.139-148
    • /
    • 2020
  • 전염병은 오래전부터 인류를 괴롭혀 왔으며 이를 예측 하고 예방하는 것은 인류에게 있어 큰 과제였다. 이러한 이유로 지금까지도 전염병을 예측하기 위해 다양한 연구가 진행되고 있다. 초기의 연구 중 대부분은 CDC(Centers for Disease Control and Prevention)의 역학 데이터에 의존한 연구였으며, CDC에서 제공하는 데이터는 일주일에 한 번만 갱신돼 실시간 질병 발생 건수를 예측하기 어렵다는 문제점을 갖고 있었다. 하지만 최근 IT 기술의 발전으로 여러 인터넷 매체들이 등장하면서 웹 데이터를 통해 전염병의 발생을 예측하고자 하는 연구가 진행되었고 이 중 우리가 조사한 연구 중 대부분은 단일 웹 데이터를 사용하여 질병을 예측하는 연구였다. 하지만 단일 웹 데이터를 통한 질병 예측은 "COVID-19" 같이 최근에 등장한 전염병에 대해서는 많은 양의 학습 데이터를 수집하기 어려우며 이러한 모델을 통해 정확한 예측을 하기 어렵다는 단점을 가지고 있다. 이에 우리는 전염병 발생을 LSTM 모델을 통해 예측할 때 여러 개의 웹 데이터를 사용하는 모델이 단일 웹 데이터를 사용하는 모델보다 정확도가 더 높음을 실험을 통해 증명하고 전염병 예측에 적절한 모델을 제안하고자 한다. 본 실험에서는 단일 웹 데이터를 사용하는 모델과 우리가 제안하는 모델을 사용하여 "말라리아"와 "유행성이하선염"의 발생을 예측했다. 우리는 2017년 12월 31 일부터 2019년 12월 28일까지 총 104주 분량의 NEWS, SNS, 검색 쿼리 데이터를 수집했는데, 이 중 75주는 학습 데이터로, 29주는 검증 데이터로 사용됐다. 실험 결과 우리가 제안한 모델의 예측 결과와 단일 웹 데이터를 사용한 모델의 예측 결과를 비교했을 때 검증 데이터에 대해서 피어슨 상관계수가 0.94, 0.86로 가장 높았고 RMSE 또한 0.19, 0.07로 가장 낮은 오차를 보여주었다.

선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구 (A Study on Image-Based Mobile Robot Driving on Ship Deck)

  • 김선덕;박경민;왕승열
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1216-1221
    • /
    • 2022
  • 선박은 화물 운송의 효율을 증대시키기 위해 대형화되는 추세이다. 선박 대형화는 선박 작업자의 이동시간 증가, 업무 강도 증가 및 작업 효율 저하 등으로 이어진다. 작업 업무 강도 증가 등의 문제는 젊은 세대의 고강도 노동 기피 현상과 맞물러 젊은 세대의 노동력 유입을 감소시키고 있다. 또한 급속한 인구 노령화도 젊은 세대의 노동력 유입 감소와 복합적으로 작용하면서 해양산업 분야의 인력 부족 문제는 극심해지는 추세이다. 해양산업 분야는 인력 부족 문제를 극복하기 위해 지능형 생산설계 플랫폼, 스마트 생산 운영관리 시스템 등의 기술을 도입하고 있으며, 스마트 자율물류 시스템도 이러한 기술 중의 하나이다. 스마트 자율물류 시스템은 각종 물품들을 지능형 이동로봇을 활용하여 전달하는 기술로서 라이다, 카메라 등의 센서를 활용해 로봇 스스로 주행이 가능하도록 하는 것이다. 이에 본 논문에서는 이동로봇이 선박 갑판의 통행로를 감지하여 stop sign이 있는 곳까지 자율적으로 주행할 수 있는지를 확인하였다. 자율주행은 Nvidia의 End-to-end learning을 통해 학습한 데이터를 기반으로, 이동로봇에 장착된 카메라를 통해 선박 갑판의 통행로를 감지하여 수행하였다. 이동로봇의 정지는 SSD MobileNetV2를 이용하여 stop sign을 확인하여 수행하였다. 실험은 약 70m 거리의 선박 갑판 통행로를 이동로봇이 이탈 없이 주행 후 stop sign을 확인하여 정지하는지를 5회 반복 실험하였으며, 실험 결과 경로이탈 없이 주행하는 결과를 얻을 수 있었다. 이 결과를 적용한 스마트 자율물류 시스템이 산업현장에 적용된다면 작업자가 작업 시 안정성, 노동력 감소, 작업 효율이 향상될 것으로 사료된다.