• Title/Summary/Keyword: machine penetration rate

Search Result 42, Processing Time 0.021 seconds

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

A Study on Punch Penetration Test for Performance Estimation of Tunnel Boring Machine (TBM의 굴진성능 예측을 위한 압입시험에 대한 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.144-156
    • /
    • 2012
  • This paper discusses the methods of estimating the punch penetration indices and data analysis punch penetration test to estimate the TBM normal force and penetration rate. In punch penetration test is known as a useful test to estimate penetration rates and normal force of TBMs directly with several slope indices indicated drill-ability and brittleness of rocks. However, the standard methods and indices for punch penetration test are not suggested yet. The main purpose of punch penetration test which is prediction of normal force of TBM disc cutter when cutters excavate rock mass. In this study, the punch penetration tests were performed for 6 representative Korean rock types and variety length and diameter of rock core specimens. Among slope indices were obtained from punch penetration test, PLI and MLI which is suggested in this study show high correlation with cutter force measured by full-scale cutting test. The results show that the predicted normal force of a single disc cutter and the experimental error was 10%. Based on these results, it is concluded that punch penetration test is reliable laboratory test for estimating thrust and penetration rates of TBM.

Correlation between the EPB shield TBM machine data and the ground condition (EPB Shield TBM 기계데이터와 지반상태의 상관관계 분석)

  • Jung, Sun-Min;Lee, Kang-Hyun;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.543-552
    • /
    • 2014
  • This research covers correlation analysis between the machine data measured from EPB Shield TBM construction site and the ground condition during excavation, and figures out how the machine data are affected by the change of ground conditions through single and mixed parameter analysis. It was found that when the ground is changed from hard rock to soft rock, the ratio of the cutter torque to thrust force increases. The relationship between the ratio of the cutter torque to thrust force and the penetration rate shows that the ratio has a certain range of values for hard rock; on the other hand, it increases for soft rock. It means that we can recognize a sign of appearance of weak zone by assessing the ratio of the cutter touque to thrust force according to each penetration rate. Multiple regression analysis of the machine data showed that the cutter torque increases with the increases of the total thrust force, and it decreases with the increase of the uniaxial compressive strength of the ground.

Analysis and Assessment of Tunnel Boring Machine Performance in Hard Rock (경암반에서 TBM 굴진 해석 및 평가)

  • 배규진;이용수;홍성완;박홍조
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.144-155
    • /
    • 1994
  • This research is designed to assess current achievement levels for mechanized excavation systems in Korea adn suggest the model predictive of TBM performance using statistical approaches. A test section in the TBM construction sites is selected to measure and analyze TBM performance. The field records including operating data, time allocation into downtime catagories, and machine design are analyzed on a shift basis. There are a total of 240 shifts, with most days operating two shifts per day. Examples of the probability density functions produced from the test section are presented and discussed. Relationships between TBM penetration rate and rock physical properties are investigated and the empirical equations for TBM performance prediction are also assessed with the field data.

  • PDF

Slurry Wear Test on the Liquid Jet (분류에 의한 SLURRY 마멸)

  • 우창기;조견식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.88-92
    • /
    • 2002
  • This research is about slurry wear of SM45C and SUS304, which using standard sand and KUM river sand. The results are as follows ; 1. Mass loss rates of both standard sand and KUM river sand were linearly increased as increasement of time and velocity. 2. The average diameter of sand from relatively, less wear rate and portion of larger particles. 3. Wear resistance was linear with time and velocity of liquid jet regardless of type of sand. Also, it was able to evaluate with the formula, $HV^2$/E calibrated with n, the velocity index. 4. The wear surface in liquid jet experiment was smooth. The maximum wear depth was observed at the location 2~4mm apart from the center in the condition of $90^{\circ}$ of collision angle 6mm of nozzle diameter, and 20mm of collision distance. The sectional shape in radial appeared as 'W'shape.

On-Line Monitoring of Abrasive Water Jet Drilling of Refractory Ceramics Using Acoustic Emission Sensing Technique (Abrasive Waterjet 세라믹 Drilling가공시 Acoustic Emission 신호를 이용한 On-Line Monitoring에 대한 연구)

  • Kwak, Hyo-Sung;Rodovan Kovacevic
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.48-57
    • /
    • 1998
  • Abrasive waterjet(AWJ)은 가공시 열에 의한 가공경화가 없기 때문에 유리, 세라믹, 타이타늄및 금속복합재료와 같은 난삭재의 가공기술로 사용이 증가되었다. Acoustic emission(AE)신호에 의한 AWJ 세라믹 drilling가공시 On-Line Monitoring의 가능성이 고찰되었다. 기계 적인 물성이 서로 상이한 3종류의 세라믹이 본 연구에서 사용되었으며, AE신호는 AWJ drilling의 깊이를 monitoring하는데 유용함을 알 수 있었고 또한 세라믹의 material removal mechanisms을 규명하였다.

  • PDF

Study of Welding Characteristics of Inconel 600 Alloy using a Continuous Wave Nd:YAG Laser Beam (연속파형 Nd:YAG 레이저를 이용한 인코넬 600 합금의 맞대기 용접 특성 연구)

  • Song, Seong-Wook;Yoo, Young-Tae;Shin, Ho-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1154-1159
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power . Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser.

  • PDF

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

A Study on the Selecting Determine Factors of Optical Filter for Recognition Financial Account Using Delphi Method (델파이법을 이용한 금융통장 정보 인식용 광학필터 결정인자 도출에 관한 연구)

  • Yu, Hyeung Keun;Lee, Kang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • In this paper, we have researched semiconductor optical filters to solve the problem of the high failure rate that are recognize bad of financial account, jam of financial account and the ATM service interruption due to failure of accurate location information among the operation of the ATM (automatic teller machine) systems. A semiconductor optical filters that have high resolution and less diffuse, high transmittance are able to detect the information of financial account surface accurately. Therefore, it is a stable filter that is able to minimize the incidence of disability. In this paper, we drew the determinants by element for implement an excellent semiconductor optical filters. Based on this, we had to be able to implement the semiconductor optical filter that is able to be mounted on the actual ATM system through future studies.