Based on the results of prototype air-shaft construction, penetration capacity of RBM(Raise Boring Machine) was analyzed and compared with TBM(Tunnel Boring Machine) performance in this study. Utilization, down time, net penetration rate and advance rate were evaluated and compared. By conducting the laboratory tests for rock properties with the analysis of penetration capacity, relation of penetration capacity and geotechnical parameters was studied. The results showed that much more higher value of utilization, however lower value of net penetration rate for RBM was obtained compared to those of TBM. In addition, as the strength of rock penetrated increased, higher value of net penetration rate was obtained contrarily to the results of TBM performance. Finally, new relationship between total hardness and net penetration rate for weak and weathered rock was derived from these results.
TBM penetration rate is a function of intact rock properties, rock mass conditions and TBM operational parameters. Machine rate of penetrationcan be predicted by knowledge of the ground conditions and its effects on machine performance. The variation of TBM operational parameters such as penetration rate and thrust plays an important role in its performance. This study presents the results of the analysis on the TBM penetration rates in schistose rock types present along the alignment of Golab tunnel based on the analysis of a TBM performance database established for every stroke through different schistose rock types. The results of the analysis are compared to the results of some empirical and theoretical predictive models such as NTH and QTBM. Additional analysis was performed to find the optimum thrust and revolution per minute values for different schistose rock types.
TBM (tunnel boring machine) 터널 프로젝트의 리스크 관리 측면에서 굴진율 예측은 중요하며, 이를 위한 머신러닝 기반 TBM 굴진율 예측 연구가 지속적으로 진행되어 왔다. 그러나, 기존 연구의 머신러닝 예측 모델은 정상 굴진율과 이상 굴진율 간의 불균형 데이터를 고려하는 데 한계가 있다. 본 연구에서는 데이터 증강 기법을 통해 불균형 데이터를 처리하여 머신러닝 기반 TBM 굴진율 이상탐지 성능을 개선하였다. 먼저, 상관관계 분석을 통해 유사 변수를 제거하여 6가지 입력특성을 선정하였다. 또한, 하위 10%와 상위 10%의 굴진율을 각각 이상 등급으로, 그 외 범위의 굴진율을 정상 등급으로 굴진율 등급을 구분하였다. 기존 학습 데이터와 SMOTE (synthetic minority oversampling technique)를 통해 증강된 학습 데이터를 각각 XGB (extreme gradient boosting)에 적용한 XGB 모델과 XGB-SMOTE 모델을 구축하였다. 굴진율 등급 예측 성능을 비교한 결과, XGB 모델은 정상 굴진율에 대한 예측 성능은 우수하나 이상 굴진율 예측 성능은 상대적으로 낮게 도출되었다. 반면, XGB-SMOTE 모델은 모든 굴진율 등급에서 일관되게 우수한 예측 성능을 보였다. 이는 SMOTE를 통한 이상 굴진율 데이터의 증강이 이상 굴진율을 유발하는 지반조건과 TBM 운영인자 간의 패턴 학습 수준을 향상시켰기 때문으로 판단된다. 결론적으로, 본 연구는 머신러닝 기반 TBM 굴진율 이상탐지 시 데이터 증강 기법을 활용한 불균형 데이터 처리가 효과적임을 보여준다.
In No. 1 tunnel for Kwnagju urban subway construction, net penetration rate of the shield TBM was analyzed. This tunnel of 540 m length is located in soil layers at starting and in hard rocks such as amphibolite and granitic gneiss at ending with 84 m length. The net penetration rate was dropped down to 2∼11 cm/hr in rock while 50∼80 cm/hr in soil. Theoretical penetration rate is analyzed in conditions of machine and rock in order to compare the actual net penetration rate. The relationships between net penetration rate and thrust force is also investigated in this report.
Mengran Xu;Arsalan Mahmoodzadeh;Abdelkader Mabrouk;Hawkar Hashim Ibrahim;Yasser Alashker;Adil Hussein Mohammed
Geomechanics and Engineering
/
제39권1호
/
pp.27-41
/
2024
Accurately estimating the performance of tunnel boring machines (TBMs) is crucial for mitigating the substantial financial risks and complexities associated with tunnel construction. Machine learning (ML) techniques have emerged as powerful tools for predicting non-linear time series data. In this research, six advanced meta-heuristic optimization algorithms based on long short-term memory (LSTM) networks were developed to predict TBM penetration rate (TBM-PR). The study utilized 1125 datasets, partitioned into 20% for testing, 70% for training, and 10% for validation, incorporating six key input parameters influencing TBM-PR. The performances of these LSTM-based models were rigorously compared using a suite of statistical evaluation metrics. The results underscored the profound impact of optimization algorithms on prediction accuracy. Among the models tested, the LSTM optimized by the particle swarm optimization (PSO) algorithm emerged as the most robust predictor of TBM-PR. Sensitivity analysis further revealed that the orientation of discontinuities, specifically the alpha angle (α), exerted the greatest influence on the model's predictions. This research is significant in that it addresses critical concerns of TBM manufacturers and operators, offering a reliable predictive tool adaptable to varying geological conditions.
한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
/
pp.162-169
/
2003
Excavation by TBM can be characterized by a rock-machine interaction during the cutting process on a small scale, but on a large scale the interaction between the rock mass and TBM becomes very significant. For the planning and evaluation of TBM tunnelling it needs to understand rock fracture mechanism by a cutter or cutters on a small scale, and to estimate penetration rate, advance rate and utilization on a large scale. In this study rock chipping mechanism due to cutter-penetration is analysed by numerical simulation, showing that rock chipping is mainly occurred by tensile failure. Also, through the analysis of factors that affect on TBM procedures in various assessment systems, it is determined that the key elements that should be considered in the planning and evaluation of TBM tunnelling are classified into rock properties, the geological structures and properties of rock mass, and the structural and functional specifications of the machine. The user-friendly assessment tool is developed, so that penetration rate, advance rate and TBM utilization are evaluated from various input data. The tool developed in this study can be applied to a practical TBM tunnelling by understanding TBM tunnelling procedures.
본 연구에서는 Raise Boring Machine(RBM의 가동율, 관입율, 굴진율과 같은 굴착능력을 조사하기 위하여 직경 3.05 m와 총 연장 98 m의 수직구를 RBM을 이용하여 시험시공 하였다. 이와 함께 국내 양수발전소, 도로터널, 석탄광업소 등에서 RBM으로 시공되었던 4개의 수직구 시공현장으로부터 시공자료를 수집하여 분석을 수행하였다. 연구결과, 주간 평균 굴진장은 약 19.3 m로 분석되었고, 평균 가동율은 약 54.3%011서 75.1 %사이에 분포하는 것으로 나타나, 이는 TBM 시공실적과 비교하여 볼 때 매우 높은 가동율을 보이고 있다. Bit force와 RPM은 (+)의 직선적인 상관관계로 나타났으며 이는 굴착효율에 따라 작업자의 판단에 기인한 결과로 추정된다. 순관입율과의 관계에서는 RBM작업의 bit force와 RPM 및 수직구 심도가 증가함에 따라 순관입율이 저하되는(-)의 상관관계를 나타내었다. 본 연구결과는 수직구 설계 및 RBM장비 선정에 필요한 정보를 줄 수 있을 것으로 사료된다.
광주도시철도 1호선 건설공사에서 4개의 도심터널은 대구경 쉴드 TBM에 의한 굴착이 계획되었으며, 그 중에 No.1 터널 구간은 13개월 동안 굴착되었다. 본 연구에서는 이 기간동안의 순굴착속도 및 이의 추력과의 관계를 분석하였다. 낮은 심도에 굴착된 536 m 길이의 이 터널은 시 작부에는 토사층이며, 종점부 84 m 구간은 암반층이다. 주간 평균 순굴착속도는 토사층에서 400∼800 mm/hr 였는데 암반층에서 20∼110 mm/hr로 급격히 낮아졌다. 이러한 순굴착속도의 크기는 장비 및 암반의 특성을 고려한 이론적 속도와 비슷한 크기이다. 그리고, 순굴착속도는 추력이 증가할수록 비례하는 것으로 분석된다.
비탈면의 유실, 붕락사고 등 비탈면에 대한 안정성을 파악하기 위해서 지층의 구성상태, 역학적 특성 등의 지반정보 파악이 필요하다. 이러한 지반정보를 파악하기 위해서 일반적으로 표준관입시험(SPT) 및 콘 관입시험 등이 널리 이용되고 있다. 대부분이 급경사로 이루어지고 진입로가 없는 비탈면에 대한 접근성 문제로 표준관입시험이 널리 활용되지 못하고 있다. 이러한 단점을 보완할 수 있는 있는 휴대용 장비인 Drop Cone Penetrometer(DCP)를 이용한 조사도 여러 가지 문제로 제한적으로 사용되고 있다. 따라서 본 연구에서는 비탈면 현장접근이 용이한 휴대용 시추기와 동적콘관입시험 모듈을 개발하고, 개발된 동적콘관입시험기를 이용한 결과와 동일 현장에서 수행한 표준관입시험값과 상관성을 분석하였다. 에너지전단율로 보정된 동적콘관입시험과 표준관입시험간의 상관식은 Nd' = 3.13 N'으로 나타났다.
Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Mohammed, Adil Hussein;Rashidi, Shima;Majeed, Mohammed Kamal
Geomechanics and Engineering
/
제30권1호
/
pp.75-91
/
2022
This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.