• Title/Summary/Keyword: machine learning framework

Search Result 250, Processing Time 0.023 seconds

Proposal of Security Orchestration Service Model based on Cyber Security Framework (사이버보안 프레임워크 기반의 보안 오케스트레이션 서비스 모델 제안)

  • Lee, Se-Ho;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.618-628
    • /
    • 2020
  • The purpose of this paper is to propose a new security orchestration service model by combining various security solutions that have been introduced and operated individually as a basis for cyber security framework. At present, in order to respond to various and intelligent cyber attacks, various single security devices and SIEM and AI solutions that integrate and manage them have been built. In addition, a cyber security framework and a security control center were opened for systematic prevention and response. However, due to the document-oriented cybersecurity framework and limited security personnel, the reality is that it is difficult to escape from the control form of fragmentary infringement response of important detection events of TMS / IPS. To improve these problems, based on the model of this paper, select the targets to be protected through work characteristics and vulnerable asset identification, and then collect logs with SIEM. Based on asset information, we established proactive methods and three detection strategies through threat information. AI and SIEM are used to quickly determine whether an attack has occurred, and an automatic blocking function is linked to the firewall and IPS. In addition, through the automatic learning of TMS / IPS detection events through machine learning supervised learning, we improved the efficiency of control work and established a threat hunting work system centered on big data analysis through machine learning unsupervised learning results.

Fast Face Gender Recognition by Using Local Ternary Pattern and Extreme Learning Machine

  • Yang, Jucheng;Jiao, Yanbin;Xiong, Naixue;Park, DongSun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1705-1720
    • /
    • 2013
  • Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.

A Comparison and Analysis of Deep Learning Framework (딥 러닝 프레임워크의 비교 및 분석)

  • Lee, Yo-Seob;Moon, Phil-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 2017
  • Deep learning is artificial intelligence technology that can teach people like themselves who need machine learning. Deep learning has become of the most promising in the development of artificial intelligence to understand the world and detection technology, and Google, Baidu and Facebook is the most developed in advance. In this paper, we discuss the kind of deep learning frameworks, compare and analyze the efficiency of the image and speech recognition field of it.

Machine learning tool to assess the earthquake structural safety of systems designed for wind: In application of noise barriers

  • Ali, Tabish;Lee, Jehyeong;Kim, Robin Eunju
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.315-328
    • /
    • 2022
  • Structures designed for wind have an opposite design approach to those designed for earthquakes. These structures are usually reliable if they are constructed in an area where there is almost no or less severe earthquake. However, as seismic activity is unpredictable and it can occur anytime and anywhere, the seismic safety of structures designed for wind must be assessed. Moreover, the design approaches of wind and earthquake systems are opposite where wind design considers higher stiffness but earthquake designs demand a more flexible structure. For this reason, a novel Machine learning framework is proposed that is used to assess and classify the seismic safety of the structures designed for wind load. Moreover, suitable criteria is defined for the design of wind resistance structures considering seismic behavior. Furthermore, the structural behavior as a result of dynamic interaction between superstructure and substructure during seismic events is also studied. The proposed framework achieved an accuracy of more than 90% for classification and prediction as well, when applied to new structures and unknown ground motions.

Research on Content Control Technology using Hand Gestures to Improve the Usability of Holographic Realistic Content

  • Sangwon LEE;Hyun Chang LEE
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.163-168
    • /
    • 2024
  • Technologies that are considered to be a part of the fourth industrial revolution include holograms, augmented reality, and virtual reality. As technology advances, the industry's scale is growing quickly as well. While the development of technology for direct use is moving slowly, awareness of floating holograms-which are considered realistic content-is growing as the industry's scale and rate of technological advancement continue to accelerate. Specifically, holograms that have been incorporated into museums and exhibition spaces are static forms of content that viewers gaze at inertly. Additionally, their use in educational fields is very passive and has a low rate of utilization. Therefore, in order to improve usability from the viewpoint of viewers of realistic content, such as exhibition halls or museums, we introduce realistic content control technology in this study using a machine learning framework to recognize hands. It is anticipated that using the study's findings, manipulating realistic content independently will enhance comprehension of objects presented as realistic content and boost its applicability in the industrial and educational domains.

Malaysian Name-based Ethnicity Classification using LSTM

  • Hur, Youngbum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3855-3867
    • /
    • 2022
  • Name separation (splitting full names into surnames and given names) is not a tedious task in a multiethnic country because the procedure for splitting surnames and given names is ethnicity-specific. Malaysia has multiple main ethnic groups; therefore, separating Malaysian full names into surnames and given names proves a challenge. In this study, we develop a two-phase framework for Malaysian name separation using deep learning. In the initial phase, we predict the ethnicity of full names. We propose a recurrent neural network with long short-term memory network-based model with character embeddings for prediction. Based on the predicted ethnicity, we use a rule-based algorithm for splitting full names into surnames and given names in the second phase. We evaluate the performance of the proposed model against various machine learning models and demonstrate that it outperforms them by an average of 9%. Moreover, transfer learning and fine-tuning of the proposed model with an additional dataset results in an improvement of up to 7% on average.

Parameterization of the Company's Business Model for Machine Learning-Based Marketing Stress Testing

  • Menkova, Krystyna;Zozulov, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.318-326
    • /
    • 2022
  • Marketing stress testing is a new method of identifying the company's strengths and weaknesses in a turbulent environment. Technically, this is a complex procedure, so it involves artificial intelligence and machine learning. The main problem is currently the development of methodological approaches to the development of the company's digital model, which will provide a framework for machine learning. The aim of the study was to identify and develop an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. This aim provided the company's activities to be considered as a set of elements (business processes, products) and factors that affect them (marketing environment). The article proposes an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. The proposed approach includes four main elements that are subject to parameterization: elements of the company's internal environment, factors of the marketing environment, the company' core competency and factors impacting the company. Matrices for evaluating the results of the work of expert groups to determine the degree of influence of the marketing environment factors were developed. It is proposed to distinguish between mega-level, macro-level, meso-level and micro-level factors depending on the degree of impact on the company. The methodological limitation of the study is that it involves the modelling method as the only one possible at this stage of the study. The implementation limitation is that the proposed approach can only be used if the company plans to use machine learning for marketing stress testing.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Processing large-scale data with Apache Spark (Apache Spark를 활용한 대용량 데이터의 처리)

  • Ko, Seyoon;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1077-1094
    • /
    • 2016
  • Apache Spark is a fast and general-purpose cluster computing package. It provides a new abstraction named resilient distributed dataset, which is capable of support for fault tolerance while keeping data in memory. This type of abstraction results in a significant speedup compared to legacy large-scale data framework, MapReduce. In particular, Spark framework is suitable for iterative machine learning applications such as logistic regression and K-means clustering, and interactive data querying. Spark also supports high level libraries for various applications such as machine learning, streaming data processing, database querying and graph data mining thanks to its versatility. In this work, we introduce the concept and programming model of Spark as well as show some implementations of simple statistical computing applications. We also review the machine learning package MLlib, and the R language interface SparkR.

Certification Framework for Aviation Software with AI Based on Machine Learning (머신러닝 기반 AI가 적용된 항공 소프트웨어 인증체계)

  • Dong-hwan Bae;Hyo-jung Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.466-471
    • /
    • 2024
  • Recently, the Machine Learning based Artificial Intelligence has introduced in aviation field. In most cases, safety assurance of aviation software is achieved by applying RTCA DO-178C or DO-278A or similar standards. These standards were developed for and are well-suited to software that has inherent deterministic properties and explainability. Considering the characteristics of AI software based on ML, it is not feasible to assure the integrity of those new aviation systems using traditional software assurance standards mentioned above. In this paper, we research the certification framework that is newly suggested by EASA to deal with the aviation system including ML AI functions, and discuss what should the Korean authority and related industries prepare to cope with this issue.