• 제목/요약/키워드: machine learning for regression

검색결과 590건 처리시간 0.029초

머신러닝 기법을 활용한 유황별 LOADEST 모형의 적정 회귀식 선정 연구: 낙동강 수계를 중심으로 (Study of Selection of Regression Equation for Flow-conditions using Machine-learning Method: Focusing on Nakdonggang Waterbody)

  • 김종건;박윤식;이서로;신용철;임경재;김기성
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.97-107
    • /
    • 2017
  • This study is to determine the coefficients of regression equations and to select the optimal regression equation in the LOADEST model after classifying the whole study period into 5 flow conditions for 16 watersheds located in the Nakdonggang waterbody. The optimized coefficients of regression equations were derived using the gradient descent method as a learning method in Tensorflow which is the engine of machine-learning method. In South Korea, the variability of streamflow is relatively high, and rainfall is concentrated in summer that can significantly affect the characteristic analysis of pollutant loads. Thus, unlike the previous application of the LOADEST model (adjusting whole study period), the study period was classified into 5 flow conditions to estimate the optimized coefficients and regression equations in the LOADEST model. As shown in the results, the equation #9 which has 7 coefficients related to flow and seasonal characteristics was selected for each flow condition in the study watersheds. When compared the simulated load (SS) to observed load, the simulation showed a similar pattern to the observation for the high flow condition due to the flow parameters related to precipitation directly. On the other hand, although the simulated load showed a similar pattern to observation in several watersheds, most of study watersheds showed large differences for the low flow conditions. This is because the pollutant load during low flow conditions might be significantly affected by baseflow or point-source pollutant load. Thus, based on the results of this study, it can be found that to estimate the continuous pollutant load properly the regression equations need to be determined with proper coefficients based on various flow conditions in watersheds. Furthermore, the machine-learning method can be useful to estimate the coefficients of regression equations in the LOADEST model.

선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정 (Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning)

  • 홍주표;강윤성;고태영
    • 한국터널지하공간학회 논문집
    • /
    • 제26권1호
    • /
    • pp.39-58
    • /
    • 2024
  • TBM (Tunnel boring machine)은 터널 굴착 과정에서 여러 디스크 커터를 이용하여 암석을 절삭한다. 디스크 커터는 암석과의 지속적인 접촉과 마찰로 인해 마모된다. 디스크 커터의 표면이 마모되면 절삭 능력이 감소하고 굴착 효율이 떨어진다. 암석의 마모성은 디스크 커터 마모에 큰 영향을 미친다. 높은 마모도를 가진 암석은 커터에 더 큰 마모를 일으키며, 이는 디스크 커터의 수명을 단축시킨다. 세르샤 마모지수(Cerchar abrasivity index, CAI)는 암석의 마모성을 평가하는데 널리 사용되는 지표로 CAI는 암석의 마모특성을 나타내며, 디스크 커터의 수명과 성능 예측에 필수적인 요소로 인식되고 있다. 본 연구의 목적은 암석의 강도, 암석학적 특성과 선형회귀, 머신러닝 기법을 이용하여 CAI를 효과적으로 추정하는 새로운 방법을 개발하는 것이다. 문헌 조사를 통해 CAI, 일축압축강도, 압열인장강도, 등가석영함량이 포함된 데이터베이스를 구축하고 파생변수를 추가하였다. 통계적 유의성과 다중공선성을 고려하여 다중선형회귀분석을 위한 입력변수를 선정하였고, 머신러닝 모델의 입력변수는 변수중요도 분석을 통해 선정하였다. 머신러닝 예측모델 중 Gradient Boosting 모델의 예측 성능이 가장 높게 나타나 최적의 CAI 예측 모델로 선정되었다. 마지막으로 본 연구에서 도출한 다중선형회귀분석과 Gradient Boosting 모델의 예측 성능을 선행연구들의 CAI 예측모델과 비교하여 연구 결과의 타당성을 확인하였다.

Neural Networks-Based Method for Electrocardiogram Classification

  • Maksym Kovalchuk;Viktoriia Kharchenko;Andrii Yavorskyi;Igor Bieda;Taras Panchenko
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.186-191
    • /
    • 2023
  • Neural Networks are widely used for huge variety of tasks solution. Machine Learning methods are used also for signal and time series analysis, including electrocardiograms. Contemporary wearable devices, both medical and non-medical type like smart watch, allow to gather the data in real time uninterruptedly. This allows us to transfer these data for analysis or make an analysis on the device, and thus provide preliminary diagnosis, or at least fix some serious deviations. Different methods are being used for this kind of analysis, ranging from medical-oriented using distinctive features of the signal to machine learning and deep learning approaches. Here we will demonstrate a neural network-based approach to this task by building an ensemble of 1D CNN classifiers and a final classifier of selection using logistic regression, random forest or support vector machine, and make the conclusions of the comparison with other approaches.

기계학습을 이용한 유선 액세스 네트워크의 에너지 소모량 예측 모델 (Prediction Model of Energy Consumption of Wired Access Networks using Machine Learning)

  • 서유화;김은회
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.14-21
    • /
    • 2021
  • 그린 네트워킹(Green networking)은 유선 데이터 네트워크(Wired data network)에서 통합적인 에너지 관리를 통해 에너지 낭비와 CO2 배출 감소를 유도하기 위해 주요 관심분야가 되었다. 그러나 액세스 네트워크(access networks)는 유선 데이터 네트워크 영역에서 사용자 단말을 제외하면 가장 많은 에너지를 소비하는 영역임에도 불구하고 그 범위가 매우 광대하여 통합적인 관리가 어렵고, 그 에너지 소모량과 에너지 절약 잠재성을 예측하기가 매우 어렵다. 본 논문에서는 기존의 다양한 수학적 예측 모델과 실험 및 실측 데이터를 이용하여 유선 액세스 네트워크의 에너지 소모량 데이터를 수집하고 머신러닝(Machine learning)의 지도학습을 이용한 다중 선형 회귀모델을 생성한다. 또한 생성한 모델로부터 다양한 실험을 통해 회귀모델의 성능을 최적화하여 유선 액세스 네트워크의 에너지 소모량을 예측하였고 생성한 회귀모델은 널리 알려진 평가 지표를 통해 성능을 평가하였다.

IoT와 기계학습을 이용한 스마트 환풍기 제어 시스템 구현 (Implementation of Smart Ventilation Control System using IoT and Machine Learning)

  • 이희은;최진구
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.283-287
    • /
    • 2020
  • 본 논문에서는 스마트폰 앱을 통하여 환풍기의 현재 상태 모니터링, on/off 기능 등 IoT를 지원하는 제어 시스템을 구현하였다. 기계학습(Machine Learning) 알고리즘 종류 중 하나인 지도학습에 포함되는 선형회귀(Linear Regression)를 적용하여 자율적으로 가정의 실내 온도, 습도의 데이터를 수집하여 상태를 진단하고 운전하면서 에너지를 최대한 효율적으로 사용하면서 사용자의 요구를 충족하도록 하였다. 구현한 시스템에서는 수동제어보다 같은 습도가 되는 데 필요한 환풍기의 작동 시간이 더 적다는 것으로 더 좋은 에너지 효율을 확인할 수 있었다. 이로 인해 사용자들은 기존의 환풍기보다 더욱 편리하고 효율적으로 사용할 수 있을 것으로 기대된다.

머신러닝 기반 BLE 실내측위 성능 개선 (Machine Learning Based BLE Indoor Positioning Performance Improvement)

  • 문준;박상현;황재정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.467-468
    • /
    • 2021
  • BLE 비콘을 이용한 실내측위 시스템의 성능 개선을 위해 BLE5.1에서 지원하는 방향탐지 기술 중 도래각을 측정하는 수신기를 제작하고 머신러닝으로 분석하여 최적의 위치를 측정하였다. 머신러닝 모델의 생성과 테스트를 위해 k-최근접 이웃 분류 및 회귀, 로지스틱 회귀, 서포트 벡터머신, 결정트리 인공신경망 및 심층신경망 등을 이용하여 학습하고 시험하였다. 결과로서, 연구에서 제작한 테스트 세트 4를 이용하는 경우 최대 99%의 정확도를 보였다.

  • PDF

코드 분포의 선형 회귀를 이용한 프로그램 유사성 분석 (Similarity Analysis of Programs through Linear Regression of Code Distribution)

  • 임현일
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권7호
    • /
    • pp.1357-1363
    • /
    • 2018
  • 정보 기술의 발전과 더불어 인공 지능 및 기계 학습 분야는 다양한 응용 분야에서 성능을 인정받고 있으며, 다양한 응용 분야로 확대되고 있다. 본 논문에서는 기계 학습 방법을 응용한 소프트웨어 분석 방법을 제안한다. 소프트웨어의 특성을 표현하기 위해 소프트웨어의 코드 분포를 분석하고 이 정보를 기계 학습 방법인 선형 회귀를 통해 분석함으로써 유사 소프트웨어를 분석할 수 있는 방법을 제안한다. 소프트웨어의 특성은 프로그램 내에 포함된 명령어에 의해 표현될 수 있으며, 명령어의 분포 정보를 학습 데이터로 활용하였다. 또한, 학습 데이터를 통한 학습 과정은 소프트웨어 유사성 분석을 위한 선형 회귀 모델을 구성한다. 본 논문에서 제안한 방법은 구현 및 실험을 통해 정확성을 검증한다. 본 논문에서 제안한 방법은 소프트웨어의 유사성을 판단할 수 있는 기본 기술로 활용될 수 있을 것으로 기대된다. 또한 기계 학습 방법을 통한 소프트웨어 분석 기술에 응용될 수 있을 것으로 기대된다.

배합 인자를 고려한 Machine Learning Algorithm 기반 콘크리트 압축강도 추정 기법에 관한 연구 (A Study on the Estimation Method of Concrete Compressive Strength Based on Machine Learning Algorithm Considering Mixture Factor)

  • 이승준;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.152-153
    • /
    • 2017
  • In the construction site, it is necessary to estimate the compressive strength of concrete in order to adjust the demolding time of the form, and establish and adjust the construction schedule. The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, six influential factors (Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know the various correlations among data and the tendency of data. After using algorithm of various methods of machine learning techniques, we selected the most suitable regression analysis model for estimating the compressive strength.

  • PDF

머신러닝을 이용한 경기도 화재위험요인 예측분석 (Predictive Analysis of Fire Risk Factors in Gyeonggi-do Using Machine Learning)

  • 서민송;에베르 엔리케 카스티요 오소리오;유환희
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.351-361
    • /
    • 2021
  • 화재는 막대한 재산과 인명피해를 초래하고 있으며 크고 작은 화재가 지속해서 발생하고 있다. 따라서 본 연구는 화재 유형별로 화재에 영향을 미치는 각종 위험요인을 예측하고자 한다. 전국에서 화재 발생 건수가 가장 많은 경기도를 대상으로 화재발생위험요인 예측분석을 실시하였다. 또한, 머신러닝 방법인 SVM, RF, GBRT를 활용하여 각 모형의 정확성을 MAE,RMSE를 통해 적합도가 높은 모형을 제시하였으며 이를 토대로 경기도 화재발생요인 예측분석을 실시하였다. 머신러닝 방법 3가지를 비교분석한 결과 RF가 MAE 1.517, RMSE 1.820으로 나타났으며 MAE, RMSE 검증데이터 및 시험데이터의 경우 MAE값 0.024, RMSE값 0.12의 차이로 매우 유사하게 나타나 가장 우수한 예측력으로 나타났다. RF기법을 적용하여 분석한 결과 공통적으로 발화장소가 화재발생에 가장 큰 영향을 주는 위험요인으로 나타났다. 이러한 연구 결과는 화재발생에 영향을 주는 요인들의 위험순서를 파악하여 화재안전관리의 유용한 자료로 활용될 것으로 예상된다.

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.