• Title/Summary/Keyword: machine learning algorithm

Search Result 1,531, Processing Time 0.031 seconds

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

Controller Learning Method of Self-driving Bicycle Using State-of-the-art Deep Reinforcement Learning Algorithms

  • Choi, Seung-Yoon;Le, Tuyen Pham;Chung, Tae-Choong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there have been many studies on machine learning. Among them, studies on reinforcement learning are actively worked. In this study, we propose a controller to control bicycle using DDPG (Deep Deterministic Policy Gradient) algorithm which is the latest deep reinforcement learning method. In this paper, we redefine the compensation function of bicycle dynamics and neural network to learn agents. When using the proposed method for data learning and control, it is possible to perform the function of not allowing the bicycle to fall over and reach the further given destination unlike the existing method. For the performance evaluation, we have experimented that the proposed algorithm works in various environments such as fixed speed, random, target point, and not determined. Finally, as a result, it is confirmed that the proposed algorithm shows better performance than the conventional neural network algorithms NAF and PPO.

Support Vector Machine Algorithm for Imbalanced Data Learning (불균형 데이터 학습을 위한 지지벡터기계 알고리즘)

  • Kim, Kwang-Seong;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.11-17
    • /
    • 2010
  • This paper proposes an improved SMO solving a quadratic optmization problem for class imbalanced learning. The SMO algorithm is aproporiate for solving the optimization problem of a support vector machine that assigns the different regularization values to the two classes, and the prosoposed SMO learning algorithm iterates the learning steps to find the current optimal solutions of only two Lagrange variables selected per class. The proposed algorithm is tested with the UCI benchmarking problems and compared to the experimental results of the SMO algorithm with the g-mean measure that considers class imbalanced distribution for gerneralization performance. In comparison to the SMO algorithm, the proposed algorithm is effective to improve the prediction rate of the minority class data and could shorthen the training time.

The Present and Perspective of Quantum Machine Learning (양자 기계학습 기술의 현황 및 전망)

  • Chung, Wonzoo;Lee, Seong-Whan
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.751-762
    • /
    • 2016
  • This paper presents an overview of the emerging field of quantum machine learning which promises an innovative expedited performance of current classical machine learning algorithms by applying quantum theory. The approaches and technical details of recently developed quantum machine learning algorithms that have been able to substantially accelerate existing classical machine learning algorithms are presented. In addition, the quantum annealing algorithm behind the first commercial quantum computer is also discussed.

Machine Learning by Decision Tree Algorithm (Decision Tree 를 이용한 Machine Learning)

  • Jung, W.C.;Choi, K.S.;Kim, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.8 no.4
    • /
    • pp.205-211
    • /
    • 1993
  • 필요한 자료의 제공만으로 컴퓨터 스스로 논리 체계를 세워 나가는 Machine Learning은 인공 지능의 한 분야로서 여러 방면에서 활발한 연구가 진행되고 있다. 본 고에서는 Machine Learning 의 기본적인 여러가지 방식 중의 하나인 Decision Tree 방법을 소개하고 문제점 및 연구 방향을 서술한다.

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.3
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

Power Quality Disturbances Identification Method Based on Novel Hybrid Kernel Function

  • Zhao, Liquan;Gai, Meijiao
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.422-432
    • /
    • 2019
  • A hybrid kernel function of support vector machine is proposed to improve the classification performance of power quality disturbances. The kernel function mathematical model of support vector machine directly affects the classification performance. Different types of kernel functions have different generalization ability and learning ability. The single kernel function cannot have better ability both in learning and generalization. To overcome this problem, we propose a hybrid kernel function that is composed of two single kernel functions to improve both the ability in generation and learning. In simulations, we respectively used the single and multiple power quality disturbances to test classification performance of support vector machine algorithm with the proposed hybrid kernel function. Compared with other support vector machine algorithms, the improved support vector machine algorithm has better performance for the classification of power quality signals with single and multiple disturbances.

An ADHD Diagnostic Approach Based on Binary-Coded Genetic Algorithm and Extreme Learning Machine

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.111-117
    • /
    • 2016
  • An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.

Analysis of Market Trajectory Data using k-NN

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • Recently, as the sensor and big data analysis technology have been developed, there have been a lot of researches that analyze the purchase-related data such as the trajectory information and the stay time. Such purchase-related data is usefully used for the purchase pattern prediction and the purchase time prediction. Because it is difficult to find periodic patterns in large-scale human data, it is necessary to look at actual data sets, find various feature patterns, and then apply a machine learning algorithm appropriate to the pattern and purpose. Although existing papers have been used to analyze data using various machine learning methods, there is a lack of statistical analysis such as finding feature patterns before applying the machine learning algorithm. Therefore, we analyze the purchasing data of Songjeong Maeil Market, which is a data gathering place, and finds some characteristic patterns through statistical data analysis. Based on the results of 1, we derive meaningful conclusions by applying the machine learning algorithm and present future research directions. Through the data analysis, it was confirmed that the number of visits was different according to the regional characteristics around Songjeong Maeil Market, and the distribution of time spent by consumers could be grasped.