• Title/Summary/Keyword: machine learning

Search Result 5,242, Processing Time 0.032 seconds

A Study on the Development of a Program for Predicting Successful Welding of Electric Vehicle Batteries Using Laser Welding (레이저 용접을 이용한 전기차 배터리 이종접합 성공 확률 예측 프로그램 개발에 관한 연구)

  • Cheol-Hwan Kim;Chan-Su Moon;Kwan-Su Lee;Jin-Su Kim;Ae-Ryeong Jo;Bo-Sung Shin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.44-49
    • /
    • 2023
  • In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

Implementation of an Automated Agricultural Frost Observation System (AAFOS) (농업서리 자동관측 시스템(AAFOS)의 구현)

  • Kyu Rang Kim;Eunsu Jo;Myeong Su Ko;Jung Hyuk Kang;Yunjae Hwang;Yong Hee Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.63-74
    • /
    • 2024
  • In agriculture, frost can be devastating, which is why observation and forecasting are so important. According to a recent report analyzing frost observation data from the Korea Meteorological Administration, despite global warming due to climate change, the late frost date in spring has not been accelerated, and the frequency of frost has not decreased. Therefore, it is important to automate and continuously operate frost observation in risk areas to prevent agricultural frost damage. In the existing frost observation using leaf wetness sensors, there is a problem that the reference voltage value fluctuates over a long period of time due to contamination of the observation sensor or changes in the humidity of the surrounding environment. In this study, a datalogger program was implemented to automatically solve these problems. The established frost observation system can stably and automatically accumulate time-resolved observation data over a long period of time. This data can be utilized in the future for the development of frost diagnosis models using machine learning methods and the production of frost occurrence prediction information for surrounding areas.

Predicting Relationship Between Instagram Use and Psychological Variables During COVID-19 Quarantine Using Multivariate Techniques (다변량 분석 방법을 이용한 인스타그램 이용과 심리적 변인 간의 관계 예측: COVID-19로 인한 자가격리자를 중심으로)

  • Chaery Park;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.3-14
    • /
    • 2023
  • Recently, the effect of using social media on psychological well-being has been highlighted. However, studies exploring factors that may predict the quality of social media relationships are relatively rare. The present study investigated whether social media activity and psychological states, such as loneliness and depression, can predict the quality of social media relationships during the COVID-19 quarantine period using a machine learning technique. Ninety-five participants completed a self-report survey on loneliness, Instagram activity, quality of social media relationships, and depression at different time points (during the self-isolation and after the release of self-isolation). Similarity analyses, including multidimensional scaling (MDS), representational similarity analysis (RSA), and classification analyses, were conducted separately at each point in time. The results of MDS revealed that time spent on social media and depression were distinguished from others in the first dimension, and loneliness and passive use were distinguished from others in the second dimension. We divided the data into two groups based on the quality of social media relationships (high and low), and we conducted RSA on each group. Findings indicated an interaction between the quality of the social media relationships and the situation. Specifically, the effect of self-isolation on the high-quality social media relationship group is more pronounced than that on the low-quality group. The classification results also revealed that the predictors of social media relationships depend on whether or not they are isolated. Overall, the results of this study imply that social media relationship could be well predicted when people are not in isolated situations.

A Study on the Prediction Models of Used Car Prices Using Ensemble Model And SHAP Value: Focus on Feature of the Vehicle Type (앙상블 모델과 SHAP Value를 활용한 국내 중고차 가격 예측 모델에 관한 연구: 차종 특성을 중심으로)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2024
  • The market share of online platform services in the used car market continues to expand. And The used car online platform service provides service users with specifications of vehicles, accident history, inspection details, detailed options, and prices of used cars. SUV vehicle type's share in the domestic automobile market will be more than 50% in 2023, Sales of Hybrid vehicle type are doubled compared to last year. And these vehicle types are also gaining popularity in the used car market. Prior research has proposed a used car price prediction model by executing a Machine Learning model for all vehicles or vehicles by brand. On the other hand, the popularity of SUV and Hybrid vehicles in the domestic market continues to rise, but It was difficult to find a study that proposed a used car price prediction model for these vehicle type. This study selects a used car price prediction model by vehicle type using vehicle specifications and options for Sedans, SUV, and Hybrid vehicles produced by domestic brands. Accordingly, after selecting feature through the Lasso regression model, which is a feature selection, the ensemble model was sequentially executed with the same sampling, and the best model by vehicle type was selected. As a result, the best model for all models was selected as the CBR model, and the contribution and direction of the features were confirmed by visualizing Tree SHAP Value for the best model for each model. The implications of this study are expected to propose a used car price prediction model by vehicle type to sales officials using online platform services, confirm the attribution and direction of features, and help solve problems caused by asymmetry fo information between them.

Analysis of the Effectiveness of Big Data-Based Six Sigma Methodology: Focus on DX SS (빅데이터 기반 6시그마 방법론의 유효성 분석: DX SS를 중심으로)

  • Kim Jung Hyuk;Kim Yoon Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Over recent years, 6 Sigma has become a key methodology in manufacturing for quality improvement and cost reduction. However, challenges have arisen due to the difficulty in analyzing large-scale data generated by smart factories and its traditional, formal application. To address these limitations, a big data-based 6 Sigma approach has been developed, integrating the strengths of 6 Sigma and big data analysis, including statistical verification, mathematical optimization, interpretability, and machine learning. Despite its potential, the practical impact of this big data-based 6 Sigma on manufacturing processes and management performance has not been adequately verified, leading to its limited reliability and underutilization in practice. This study investigates the efficiency impact of DX SS, a big data-based 6 Sigma, on manufacturing processes, and identifies key success policies for its effective introduction and implementation in enterprises. The study highlights the importance of involving all executives and employees and researching key success policies, as demonstrated by cases where methodology implementation failed due to incorrect policies. This research aims to assist manufacturing companies in achieving successful outcomes by actively adopting and utilizing the methodologies presented.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

Development of a Prediction Model for Personal Thermal Sensation on Logistic Regression Considering Urban Spatial Factors (도시공간적 요인을 고려한 로지스틱 회귀분석 기반 체감더위 예측 모형 개발)

  • Uk-Je SUNG;Hyeong-Min PARK;Jae-Yeon LIM;Yu-Jin SEO;Jeong-Min SON;Jin-Kyu MIN;Jeong-Hee EUM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.81-98
    • /
    • 2024
  • This study analyzed the impact of urban spatial factors on the thermal environment. The personal thermal sensation was set as the unit of thermal environment to analyze its correlation with environmental factors. To collect data on personal thermal sensation, Living Lab was applied, allowing citizens to record their thermal sensation and measure the temperature. Based on the input points of the collected personal thermal sensation, nearby urban spatial elements were collected to build a dataset for statistical analysis. Logistic regression analysis was conducted to analyze the impact of each factor on personal thermal sensation. The analysis results indicate that the temperature is influenced by the surrounding spatial environment, showing a negative correlation with building height, greenery rate, and road rate, and a positive correlation with sky view factor. Furthermore, the road rate, sky view factor, and greenery rate, in that order, had a strong impact on perceived heat. The results of this study are expected to be utilized as basic data for assessing the thermal environment to prepare local thermal environment measures in response to climate change.

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.