Microscopic examination of the morphology of wear debris is an accepted method for machine condition and fault diagnosis. However wear particle analysis has not been widely accepted in industry because it is dependent on expert interpretation of particle morphology and subjective assessment criteria. This paper was undertaken to analyze the morphology of wear debris for machine condition diagnosis of the lubricated moving surfaces by image processing and analysis. The lubricating wear test was performed under different sliding conditions using a wear test device made in our laboratory and wear testing specimen of the pin-on-disk-type was rubbed in paraffine series base oil. In order to describe characteristics of debris of various shape and size, four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties in current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.
This paper introduces an enhanced condition monitoring and diagnosis system recently developed for rotating machinery. In the system, the data aquisition/monitoring signal processing, machine condition classifier, case-based reasoning and demonstration modules are effectively integrated with user-friendliness so that machine operators can easily monitor and diagnose the status of rotating machinery in operation. Some of the new features include the directional spectrum, case-based reasoning and neural network techniques. And the demonstrator modules for fault diagnosis of a Bear driving system and for basic understanding of the rotor dynamics are provided to help the potential users better understand the system.
The high speed machining technology has been improved remarkably in die/mold industry with the growth of parts and materials industries. Though the spindle speed of machine tool increases, the condition monitoring techniques of the machine tool, tool and workpiece in high speed machining ate incomplete. In tins study, efficient sensing technology in high speed machining is suggested by observing the characteristics of cutting force, gap sensor and accelerometer signal also, machinability of high-speed machining is experimentally evaluated sensing technique to monitor the machine tool and machining conditions was performed.
A radial basis hybrid neural network (RHNN) is presented for an on-line detection of machine condition change. Two-phase modeling by RHNN is designed for describing a machine condition process and for predicting future signal. A moving block procedure is also designed for detecting a process change. A fast on-line learning algorithm, the recursive least square estimation, is introduced. Experimental results showed the RHNN could be utilized efficiently for on-line machine condition monitoring.
A radial basis hybrid neural network (RHNN) is presented for on-line prediction of machine condition. A modular-based neural architecture is designed for modeling a machine condition process and for predicting future signal. A fast on-line learning algorithm is introduced. Experimental results showed the RHNN could be utilized efficiently for on-line machine condition monitoring.
This study proposes a web-based remote monitoring system for evaluating degradation of machine tools using ART2(Adaptive Resonance Theory 2) neural network. A number of studies on the monitoring of machine tools using neural networks have been reported. However, when normal condition is changed due to factors such as maintenance, tool change etc., or a new failure signal is generated, such algorithms need to be entirely retrained in order to accommodate the new signals. To cope with such problems, this study develops a remote monitoring system using ART2 in which new signals when required are simply added to the classes previously trained. This system can monitor degradation as well as failure of machine tools. To show the effectiveness of the proposed approach, the system is experimentally applied to monitoring a simulator similar to the main spindle of a machine tool, and the results show that the proposed system can be extended to monitoring of real industrial machine tools and equipment.
회전기기의 결함진단에 있어서 기존의 방법과 달리 적외선열화상기술은 회전기기의 결함진단에 대해 비접촉, 비파괴 및 상태감시 모니터링을 할 수 있다. 본 논문에서는 적외선열화상 상태진단을 기반으로 하는 회전기기의 결함진단에 대한 새로운 접근법을 제안한다. 따라서 회전기에서 가장 많이 사용되어지는 볼베어링을 이용하여 실험을 수행하였고, 진동 스펙트럼 분석과 적외선열화상을 이용하여 실시간 모니터링을 수행하였다. 적외선열화상기법을 이용하여 볼베어링의 윤활 불균형에 따른 온도 특성을 확인할 수 있었다. 이러한 실험을 통한 결과를 분석 검토하여 향후 산업전반의 회전기기의 상태감시연구에 있어서 다양한 분야에 사용되어 질 것으로 예상된다.
In order to monitior machine tool condition and diagnose alarm states due to electrical and mechanical faults, and expert system using diagnostic parameters of NC machine tools was developed. A model-based knowledge base was constructed via searching and comparing procedures of diagnostic parameters and state parameters of the machine tool. Diagnostic monitoring results generate through a successive type inference engine were graphically displayed on the screen of the console. The validity and reliability of the expert system was rcrified on a vertical machining center equipped with FANUC OMC through a series of experiments.
Many industrial operations require continuous or nearly-continuous operation of machines, interruption of which can result in significant cost loss. The condition monitoring of these machines has received considerable attentions in recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is to develop a new type of smart sensor for on-line condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This system is capable for signal preprocessing task and analog to digital converter which is controlled by CPU. This sensor communicates with a remote site PC using TCP/IP protocols. The developed sensor executes performance tests for data acquisition accuracy estimations.
Main Spindle System has effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, main spindle unit in Machine tools are often cases where damage occurs do not meet the design life due to driving in harsh environments. This is when excessive maintenance and repair of machine tools or for damage stability has resulted in huge economic losses. Therefore, this studying propose a method of accelerated life test for diagnosing and prognosis the state of life assessment main spindle system. Time status monitoring of diagnostic data - through the analysis of the frequency band signals were carried out inside the main spindle bearing condition monitoring and fault diagnosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.