• 제목/요약/키워드: machine accuracy

Search Result 3,178, Processing Time 0.029 seconds

A COMPARATIVE STUDY ON THE FRACTURE STRENGTH AND MARGINAL FITNESS OF FIBER-REINFORCED COMPOSITE BRIDGE (섬유강화형 복합레진브릿지의 파절강도 및 변연적합도에 관한 연구)

  • Choi Ho-Kuen;Shin Sang-Wan;Lim Ho-Nam;Suh Kuyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.526-546
    • /
    • 2001
  • Fiber-reinforced composite(FRC) was developed as a structural component for dental appliances such as prosthodontic framework. FRC provides the potential for fabrication of a metal-free, excellent esthetic prostheses. It has demonstrated success as a result of its simple fabrication, natural colour, and marginal integrity, and fracture resistance of veneering composite resin and the FRC material. Although it has lots of merits, clinical and objective data are insufficient. The purpose of this study was to evaluate the fracture strength and the marginal fitness of fiber reinforced composite bridge in the posterior region for clinical application. Sixteen bridges of each group. $Targis/Vectris^{(R)}$, $Sculpture-Fibrekor^{(R)}$, and In-Ceram, were fabricated. All specimens were cemented with Panavia 21 to the master dies. Strength evaluation was accomplished by a universal testing machine (Instron). The marginal fitness was measured by using the stereoscope (${\times}50$). The results were as follows. : 1. The fracture strength according to the materials was significantly decreased in order In-Ceram($238.81{\pm}82$), Targis Vectris($176.25{\pm}18.93$), Sculpture-Fibrekor($120.35{\pm}20.08$) bridges. 2. FRC resin bridges were not completely fractured, while In-Ceram bridges were completely fractured in the pontic joint. 3. The marginal accuracy was significantly decreased in order Targis/Vectris ($60.71{\mu}m$), Sculpture-Fibrekor($73.10{\mu}m$) In-ceram Bridge ($83.81{\mu}m$). 4. The fitness of occlusal sites had a lower value than the marginal sites(P<0.001), and the marginal gaps of inner site of the pontic were greater than that of outer sites of the pontic. Fiber reinforced composite bridges are new, esthetic prosthesis and can be clinically used in anterior regions and short span bridges. However, caution must be exercised when extrapolating laboratory data to the clinical situation because there are no long term clinical data regarding the overall success of the FRC.

  • PDF

Accuracy of CT image in measuring the mandible for implant : Effect of mandibular position and gantry angle (임플랜트를 위한 하악골 측정시 전산화단?사진상의 정확도에 관한 연구 : 하악 위치와 gantry각이 미치는 영향)

  • Choi Soon-Chul;Choi Hang-Moon;Park Rae-Jeong;Lee Sam-Sun;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.225-234
    • /
    • 1998
  • We used five adult dog mandibles embedded in resin block and six different cross-sectional planes for each mandible were choosen. According to the angle of mandibular occulsal plane to vertical plane(mandibular angle) and gantry angle of CT machine, we classified 4 experimental groups and 1 control group. The control group images were taken at the mandibular angel 0° and gantry angle 0°. The experimental images were taken at the mandibular angle 15° and gantry angle 0°(group 1); 30° and 0°(group 2); 15° and 15°(group 3) ;30° and 30°(group 4), respectively. Using the reformatted cross-sectional images, the distance from the mandibular canal to the alveolar crest and the distance from the mandibular canal to the buccal cortex and to the lingual cortex was measured and compared. The obtained results were as follows: 1. The distance from the mandibular canal to the alveolar crest of group 1 and 2 was larger than control group, but the distance of group 3 and 4 was smaller. The distance from the mandibular canal to the buccal cortex and to the lingual cortex of all experimental groups was smaller than control group. 2. The distance from the mandibular canal to the alveolar crest showed the largest difference from control group in all experimental groups, especially in group 2 and 4(p<0.05). 3. In the distance from the mandibular canal to the alveolar crest, the number of deviation value under 1 mm was 20 in group 3 and was 11 in group 2 and 4, respectively. 4. The deviation value of the distance from the mandibular canal to the buccal cortex and to the lingual cortex was under 1 mm in most cases.

  • PDF

Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific (조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측)

  • Jeong, Hyeon-Iee;Yoon, Young-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.197-207
    • /
    • 2010
  • Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera (모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.471-479
    • /
    • 2018
  • Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.

An Improvement in K-NN Graph Construction using re-grouping with Locality Sensitive Hashing on MapReduce (MapReduce 환경에서 재그룹핑을 이용한 Locality Sensitive Hashing 기반의 K-Nearest Neighbor 그래프 생성 알고리즘의 개선)

  • Lee, Inhoe;Oh, Hyesung;Kim, Hyoung-Joo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.681-688
    • /
    • 2015
  • The k nearest neighbor (k-NN) graph construction is an important operation with many web-related applications, including collaborative filtering, similarity search, and many others in data mining and machine learning. Despite its many elegant properties, the brute force k-NN graph construction method has a computational complexity of $O(n^2)$, which is prohibitive for large scale data sets. Thus, (Key, Value)-based distributed framework, MapReduce, is gaining increasingly widespread use in Locality Sensitive Hashing which is efficient for high-dimension and sparse data. Based on the two-stage strategy, we engage the locality sensitive hashing technique to divide users into small subsets, and then calculate similarity between pairs in the small subsets using a brute force method on MapReduce. Specifically, generating a candidate group stage is important since brute-force calculation is performed in the following step. However, existing methods do not prevent large candidate groups. In this paper, we proposed an efficient algorithm for approximate k-NN graph construction by regrouping candidate groups. Experimental results show that our approach is more effective than existing methods in terms of graph accuracy and scan rate.

Performance Improvement of Spam Filtering Using User Actions (사용자 행동을 이용한 쓰레기편지 여과의 성능 개선)

  • Kim Jae-Hoon;Kim Kang-Min
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.163-170
    • /
    • 2006
  • With rapidly developing Internet applications, an e-mail has been considered as one of the most popular methods for exchanging information. The e-mail, however, has a serious problem that users ran receive a lot of unwanted e-mails, what we called, spam mails, which cause big problems economically as well as socially. In order to block and filter out the spam mails, many researchers and companies have performed many sorts of research on spam filtering. In general, users of e-mail have different criteria on deciding if an e-mail is spam or not. Furthermore, in e-mail client systems, users do different actions according to a spam mail or not. In this paper, we propose a mail filtering system using such user actions. The proposed system consists of two steps: One is an action inference step to draw user actions from an e-mail and the other is a mail classification step to decide if the e-mail is spam or not. All the two steps use incremental learning, of which an algorithm is IB2 of TiMBL. To evaluate the proposed system, we collect 12,000 mails of 12 persons. The accuracy is $81{\sim}93%$ according to each person. The proposed system outperforms, at about 14% on the average, a system that does not use any information about user actions.

Learning a Classifier for Weight Grouping of Export Containers (기계학습을 이용한 수출 컨테이너의 무게그룹 분류)

  • Kang, Jae-Ho;Kang, Byoung-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.59-79
    • /
    • 2005
  • Export containers in a container terminal are usually classified into a few weight groups and those belonging to the same group are placed together on a same stack. The reason for this stacking by weight groups is that it becomes easy to have the heavier containers be loaded onto a ship before the lighter ones, which is important for the balancing of the ship. However, since the weight information available at the time of container arrival is only an estimate, those belonging to different weight groups are often stored together on a same stack. This becomes the cause of extra moves, or rehandlings, of containers at the time of loading to fetch out the heavier containers placed under the lighter ones. In this paper, we use machine learning techniques to derive a classifier that can classify the containers into the weight groups with improved accuracy. We also show that a more useful classifier can be derived by applying a cost-sensitive learning technique, for which we introduce a scheme of searching for a good cost matrix. Simulation experiments have shown that our proposed method can reduce about 5$\sim$7% of rehandlings when compared to the traditional weight grouping method.

  • PDF

DeNERT: Named Entity Recognition Model using DQN and BERT

  • Yang, Sung-Min;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2020
  • In this paper, we propose a new structured entity recognition DeNERT model. Recently, the field of natural language processing has been actively researched using pre-trained language representation models with a large amount of corpus. In particular, the named entity recognition, which is one of the fields of natural language processing, uses a supervised learning method, which requires a large amount of training dataset and computation. Reinforcement learning is a method that learns through trial and error experience without initial data and is closer to the process of human learning than other machine learning methodologies and is not much applied to the field of natural language processing yet. It is often used in simulation environments such as Atari games and AlphaGo. BERT is a general-purpose language model developed by Google that is pre-trained on large corpus and computational quantities. Recently, it is a language model that shows high performance in the field of natural language processing research and shows high accuracy in many downstream tasks of natural language processing. In this paper, we propose a new named entity recognition DeNERT model using two deep learning models, DQN and BERT. The proposed model is trained by creating a learning environment of reinforcement learning model based on language expression which is the advantage of the general language model. The DeNERT model trained in this way is a faster inference time and higher performance model with a small amount of training dataset. Also, we validate the performance of our model's named entity recognition performance through experiments.