Fiber-reinforced composite(FRC) was developed as a structural component for dental appliances such as prosthodontic framework. FRC provides the potential for fabrication of a metal-free, excellent esthetic prostheses. It has demonstrated success as a result of its simple fabrication, natural colour, and marginal integrity, and fracture resistance of veneering composite resin and the FRC material. Although it has lots of merits, clinical and objective data are insufficient. The purpose of this study was to evaluate the fracture strength and the marginal fitness of fiber reinforced composite bridge in the posterior region for clinical application. Sixteen bridges of each group. $Targis/Vectris^{(R)}$, $Sculpture-Fibrekor^{(R)}$, and In-Ceram, were fabricated. All specimens were cemented with Panavia 21 to the master dies. Strength evaluation was accomplished by a universal testing machine (Instron). The marginal fitness was measured by using the stereoscope (${\times}50$). The results were as follows. : 1. The fracture strength according to the materials was significantly decreased in order In-Ceram($238.81{\pm}82$), Targis Vectris($176.25{\pm}18.93$), Sculpture-Fibrekor($120.35{\pm}20.08$) bridges. 2. FRC resin bridges were not completely fractured, while In-Ceram bridges were completely fractured in the pontic joint. 3. The marginal accuracy was significantly decreased in order Targis/Vectris ($60.71{\mu}m$), Sculpture-Fibrekor($73.10{\mu}m$) In-ceram Bridge ($83.81{\mu}m$). 4. The fitness of occlusal sites had a lower value than the marginal sites(P<0.001), and the marginal gaps of inner site of the pontic were greater than that of outer sites of the pontic. Fiber reinforced composite bridges are new, esthetic prosthesis and can be clinically used in anterior regions and short span bridges. However, caution must be exercised when extrapolating laboratory data to the clinical situation because there are no long term clinical data regarding the overall success of the FRC.
Journal of Korean Academy of Oral and Maxillofacial Radiology
/
v.28
no.1
/
pp.225-234
/
1998
We used five adult dog mandibles embedded in resin block and six different cross-sectional planes for each mandible were choosen. According to the angle of mandibular occulsal plane to vertical plane(mandibular angle) and gantry angle of CT machine, we classified 4 experimental groups and 1 control group. The control group images were taken at the mandibular angel 0° and gantry angle 0°. The experimental images were taken at the mandibular angle 15° and gantry angle 0°(group 1); 30° and 0°(group 2); 15° and 15°(group 3) ;30° and 30°(group 4), respectively. Using the reformatted cross-sectional images, the distance from the mandibular canal to the alveolar crest and the distance from the mandibular canal to the buccal cortex and to the lingual cortex was measured and compared. The obtained results were as follows: 1. The distance from the mandibular canal to the alveolar crest of group 1 and 2 was larger than control group, but the distance of group 3 and 4 was smaller. The distance from the mandibular canal to the buccal cortex and to the lingual cortex of all experimental groups was smaller than control group. 2. The distance from the mandibular canal to the alveolar crest showed the largest difference from control group in all experimental groups, especially in group 2 and 4(p<0.05). 3. In the distance from the mandibular canal to the alveolar crest, the number of deviation value under 1 mm was 20 in group 3 and was 11 in group 2 and 4, respectively. 4. The deviation value of the distance from the mandibular canal to the buccal cortex and to the lingual cortex was under 1 mm in most cases.
Journal of the Korea Society of Computer and Information
/
v.15
no.12
/
pp.197-207
/
2010
Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.
The Transactions of The Korean Institute of Electrical Engineers
/
v.60
no.3
/
pp.639-647
/
2011
In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.8
/
pp.1947-1954
/
2013
Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.3
/
pp.471-479
/
2018
Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.
The k nearest neighbor (k-NN) graph construction is an important operation with many web-related applications, including collaborative filtering, similarity search, and many others in data mining and machine learning. Despite its many elegant properties, the brute force k-NN graph construction method has a computational complexity of $O(n^2)$, which is prohibitive for large scale data sets. Thus, (Key, Value)-based distributed framework, MapReduce, is gaining increasingly widespread use in Locality Sensitive Hashing which is efficient for high-dimension and sparse data. Based on the two-stage strategy, we engage the locality sensitive hashing technique to divide users into small subsets, and then calculate similarity between pairs in the small subsets using a brute force method on MapReduce. Specifically, generating a candidate group stage is important since brute-force calculation is performed in the following step. However, existing methods do not prevent large candidate groups. In this paper, we proposed an efficient algorithm for approximate k-NN graph construction by regrouping candidate groups. Experimental results show that our approach is more effective than existing methods in terms of graph accuracy and scan rate.
With rapidly developing Internet applications, an e-mail has been considered as one of the most popular methods for exchanging information. The e-mail, however, has a serious problem that users ran receive a lot of unwanted e-mails, what we called, spam mails, which cause big problems economically as well as socially. In order to block and filter out the spam mails, many researchers and companies have performed many sorts of research on spam filtering. In general, users of e-mail have different criteria on deciding if an e-mail is spam or not. Furthermore, in e-mail client systems, users do different actions according to a spam mail or not. In this paper, we propose a mail filtering system using such user actions. The proposed system consists of two steps: One is an action inference step to draw user actions from an e-mail and the other is a mail classification step to decide if the e-mail is spam or not. All the two steps use incremental learning, of which an algorithm is IB2 of TiMBL. To evaluate the proposed system, we collect 12,000 mails of 12 persons. The accuracy is $81{\sim}93%$ according to each person. The proposed system outperforms, at about 14% on the average, a system that does not use any information about user actions.
Export containers in a container terminal are usually classified into a few weight groups and those belonging to the same group are placed together on a same stack. The reason for this stacking by weight groups is that it becomes easy to have the heavier containers be loaded onto a ship before the lighter ones, which is important for the balancing of the ship. However, since the weight information available at the time of container arrival is only an estimate, those belonging to different weight groups are often stored together on a same stack. This becomes the cause of extra moves, or rehandlings, of containers at the time of loading to fetch out the heavier containers placed under the lighter ones. In this paper, we use machine learning techniques to derive a classifier that can classify the containers into the weight groups with improved accuracy. We also show that a more useful classifier can be derived by applying a cost-sensitive learning technique, for which we introduce a scheme of searching for a good cost matrix. Simulation experiments have shown that our proposed method can reduce about 5$\sim$7% of rehandlings when compared to the traditional weight grouping method.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.29-35
/
2020
In this paper, we propose a new structured entity recognition DeNERT model. Recently, the field of natural language processing has been actively researched using pre-trained language representation models with a large amount of corpus. In particular, the named entity recognition, which is one of the fields of natural language processing, uses a supervised learning method, which requires a large amount of training dataset and computation. Reinforcement learning is a method that learns through trial and error experience without initial data and is closer to the process of human learning than other machine learning methodologies and is not much applied to the field of natural language processing yet. It is often used in simulation environments such as Atari games and AlphaGo. BERT is a general-purpose language model developed by Google that is pre-trained on large corpus and computational quantities. Recently, it is a language model that shows high performance in the field of natural language processing research and shows high accuracy in many downstream tasks of natural language processing. In this paper, we propose a new named entity recognition DeNERT model using two deep learning models, DQN and BERT. The proposed model is trained by creating a learning environment of reinforcement learning model based on language expression which is the advantage of the general language model. The DeNERT model trained in this way is a faster inference time and higher performance model with a small amount of training dataset. Also, we validate the performance of our model's named entity recognition performance through experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.