• 제목/요약/키워드: mTOR-p70S6K

검색결과 23건 처리시간 0.03초

대장암과 선종 병변에서 mTOR 신호 단백질의 면역조직화학 염색성 평가 (Evaluation of the Immunohistochemical Staining Pattern of the mTOR Signaling Proteins in Colorectal Cancers and Adenoma Lesions)

  • 김진목;이현욱
    • 대한임상검사과학회지
    • /
    • 제49권4호
    • /
    • pp.470-476
    • /
    • 2017
  • mTOR 신호전달 단백질의 변화는 다양한 종류의 암에서 관찰 되었다. 따라서 이들 단백질은 최근에 암 치료제에 대한 새롭고 흥미로운 표적이 되고 있다. 우리는 대장암과 선종 환자의 mTOR 세포신호의 활성도를 조사하였다. 면역조직화학적 방법으로 대장암과 선종의 세포신호 단백질 성분인 mTOR, p70-S6K, S6, 4EBP1 발현을 분석하였다. 이번 연구는 모두 100개의 예를 악성(Colorectal Adenocarcinoma, CRAC) 40건, 고등급 선종(Adenoma with High grade intraepithelial neoplasms, HIN) 30건, 저등급 선종(Adenoma with Low-grade intraepithelial neoplasms, LIN) 30건으로 분류하여 진행하였다. p-mTOR의 발현률은 LIN 7%, HIN 30%, CRAC 75%였고 p-S6의 발현률 또한 LIN 10%, HIN 27%, CRAC 55%였다. p-mTOR, p-S6의 발현과 선종-선암 연속성은 중요한 상관관계 있다는 것이 발견되었다. 그리고 흥미롭게도 p-S6 발현률은 진행암보다 초기암에서 더 높았다.

Neuroprotective Effect of Duloxetine on Chronic Cerebral Hypoperfusion-Induced Hippocampal Neuronal Damage

  • Park, Jin-A;Lee, Choong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.115-120
    • /
    • 2018
  • Chronic cerebral hypoperfusion (CCH), which is associated with onset of vascular dementia, causes cognitive impairment and neuropathological alterations in the brain. In the present study, we examined the neuroprotective effect of duloxetine (DXT), a potent and balanced serotonin/norepinephrine reuptake inhibitor, on CCH-induced neuronal damage in the hippocampal CA1 region using a rat model of permanent bilateral common carotid arteries occlusion. We found that treatment with 20 mg/kg DXT could attenuate the neuronal damage, the reduction of phosphorylations of mTOR and p70S6K as well as the elevations of $TNF-{\alpha}$ and $IL-1{\beta}$ levels in the hippocampal CA1 region at 28 days following CCH. These results indicate that DXT displays the neuroprotective effect against CCH-induced hippocampal neuronal death, and that neuroprotective effect of DXT may be closely related with the attenuations of CCH-induced decrease of mTOR/p70S6K signaling pathway as well as CCH-induced neuroinflammatory process.

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

EMT 억제를 통한 멜리틴의 폐암세포 이동 및 침투 억제 효과 (Melittin inhibits cell migration and invasion via blocking of the epithelial-mesenchymal transition (EMT) in lung cancer cells)

  • 조현지;정윤정;김문현;정일경;강동욱;장영채
    • 한국식품과학회지
    • /
    • 제50권1호
    • /
    • pp.105-110
    • /
    • 2018
  • 멜리틴은 봉독의 주요 성분 중 하나로 항염증과 항암활성 효과를 가지고 있다. 우리는 폐암세포에서 멜리틴이 EMT 억제를 통해 암세포 이동과 침투를 억제하는 사실을 확인하였다. 멜리틴은 EGF로 유도된 폐암 세포 이동과 침투를 억제하였을 뿐만 아니라 EMT와 관련된 단백질인 이카드헤린의 발현을 증가시켰으며, 바이멘틴과 피브로넥틴 발현은 감소시켰다. 또한 멜리틴에 의한 EMT조절 전사인자인 ZEB2, Slug, Snail의 발현을 확인한 결과 멜리틴 처리에 의해 농도의존적으로 발현이 감소하였다. 또한 작용 메커니즘을 확인하기 위해 mTOR와 FAK 메커니즘을 확인한 실험에서 EGF 처리에 의해 증가한 AKT, mTOR, p70S6K, 4EBP1의 인산화가 멜리틴 농도의존적으로 감소하였다. 그러나 FAK는 EGF에 의해 변화가 없었으며, EKR, JNK 메커니즘은 EGF 처리에 의해 인산화가 증가하였으나 멜리틴 처리에 의해 아무런 영향을 받지 않았다. 그러므로, 폐암세포의 세포 이동과 침투에 대한 멜리틴의 억제효과는 AKT/mTOR/P70S6K/4EBP1 기전 억제를 통해 EMT를 억제하여 세포 이동과 침투를 억제하는 것으로 보인다.

The Effect of L-Ornithine on the Phosphorylation of mTORC1 Downstream Targets in Rat Liver

  • Kokubo, Takeshi;Maeda, Shyuichi;Tazumi, Kyoko;Nozawa, Hajime;Miura, Yutaka;Kirisako, Takayoshi
    • Preventive Nutrition and Food Science
    • /
    • 제20권4호
    • /
    • pp.238-245
    • /
    • 2015
  • A non-protein amino acid, L-ornithine (Orn), has been shown to stimulate the urea cycle and tissue protein synthesis in the liver. The purpose of the current study was to assess whether Orn affects the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway, which is involved in protein synthesis. Primary cultured cells isolated from Wistar rat liver were incubated in an amino acid-free medium, followed by addition of Orn for 3 h. The cell lysate was subjected to immunoblotting to evaluate the phosphorylation of downstream targets of mTORC1, including p70S6K, S6, and 4EBP1. To assess the involvement of mTORC1 for the effect of Orn, the cells were pretreated with the mTOR inhibitor rapamycin before the addition of Orn and the cell lysate was subjected to immunoblotting. We next examined whether the effects of Orn were exerted in vivo. Orn was orally administered to 18 h food-deprived rats, the blood and the livers were collected at 1 and 3 h after administration for immunoblotting. Orn treatment for primary cultured cells for 3 h enhanced the phosphorylation of p70S6K, S6, and 4EBP1. In addition, rapamycin blocked the effects of Orn completely (p70S6K and S6) or partially (4EBP1). The oral administration of Orn to the rat also augmented the phosphorylation of mTORC1 downstream targets notably in S6 at 1 h. Our findings demonstrate that Orn has the potential to induce the phosphorylation of downstream targets of mTORC1 in the rat liver. This may be mediated by the augmentation of mTORC1 activity.

mTOR signalling pathway - A root cause for idiopathic autism?

  • Ganesan, Harsha;Balasubramanian, Venkatesh;Iyer, Mahalaxmi;Venugopal, Anila;Subramaniam, Mohana Devi;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.424-433
    • /
    • 2019
  • Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals.

인간섬유아세포 Hs68에서 esculetin이 TNF-α로 유도된 MMP-1 발현에 미치는 효과 (Effects of Esculetin on TNF-α Induced MMP-1 Expression in Human Fibroblasts Hs68)

  • 전보희;김용민
    • 생약학회지
    • /
    • 제54권1호
    • /
    • pp.1-8
    • /
    • 2023
  • The skin is an important barrier that protects the body from harmful environments such as UV rays. When the skin is repeatedly stimulated, such as UV rays, ROS and pro-inflammatory cytokines are overproduced. As a result, the proteins and nucleic acids that make up the skin are damaged, and aging occurs. Esculetin is known to have anti-inflammatory, antioxidant and UV-induced MMP-1 inhibitory effects. However, the inhibitory effect of MMP-1 on TNF-α-induced fibroblasts is not known. Therefore, in this study, the MMP-1 inhibitory effect of esculetin was confirmed in TNF-α-induced fibroblasts. As a result of confirming the cytotoxicity of esculetin in Hs68 cells by MTT assay, there was no significant toxicity up to 200 µM. As a result of real-time PCR and ELISA, it was confirmed that esculetin inhibited the expression of MMP-1. Esculetin did not inhibit MAPK (ERK, JNK, p38) phosphorylation, but inhibited phosphorylation of the mTOR-p70S6k signaling pathway. In addition, it was confirmed that the phosphorylation of the transcription factor NF-κB was inhibited. These results suggest that esculetin has potential as an anti-aging material.

Identification of a Novel Human Lysophosphatidic Acid Acyltransferase, LPAAT-theta, Which Activates mTOR Pathway

  • Tang, Wenwen;Yuan, Jian;Chen, Xinya;Gu, Xiuting;Luo, Kuntian;Li, Jie;Wan, Bo;Wang, Yingli;Yu, Long
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.626-635
    • /
    • 2006
  • Lysophosphatidic acid acyltransferase (LPAAT) is an intrinsic membrane protein that catalyzes the synthesis of phosphatidic acid (PA) from lysophosphatidic acid (LPA). It is well known that LPAAT is involved in lipid biosynthesis, while its role in tumour progression has been of emerging interest in the last few years. To date, seven members of the LPAAT gene family have been found in human. Here we report a novel LPAAT member, designated as LPAAT-theta, which was 2728 base pairs in length and contained an open reading frame (ORF) encoding 434 amino acids. The LPAAT-theta gene consisted of 12 exons and 11 introns, and mapped to chromosome 4q21.23. LPAAT-theta was ubiquitously expressed in 18 human tissues by RT-PCR analysis. Subcellular localization of LPAAT-theta-EGFP fusion protein revealed that LPAAT-theta was distributed primarily in the endoplasmic reticulum (ER) of COS-7 cells. Furthermore, we found that the overexpression of LPAAT-theta can induce mTOR-dependent p70S6K phosphorylation on Thr389 and 4EBP1 phosphorylation on Ser65 in HEK293T cells.

The Protein Kinase 2 Inhibitor CX-4945 Induces Autophagy in Human Cancer Cell Lines

  • Kim, Jiyeon;Park, Mikyung;Ryu, Byung Jun;Kim, Seong Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2985-2989
    • /
    • 2014
  • Autophagy is a self-digestion process in which intracellular structures are degraded in response to stress. Notably, prolonged autophagy leads to cell death. In this study, we investigated whether CX-4945, an orally available protein kinase 2 (CK2) inhibitor, induces autophagic cell death in human cervical cancer-derived HeLa cells and in human prostate cancer-derived LNCaP cells. CX-4945 treatment of both cell lines resulted in the formation of autophagosomes, in the conversion of microtubule-associated protein 1 light chain 3 (LC3), and in down-regulation of the Akt-mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (S6K) signaling cascade. Thus, pharmacologic inhibition of CK2 by CX-4945 induced autophagic cell death in human cancer cells by down-regulating Akt-mTOR-S6K. These results suggest that autophagy-inducing agents have potential as anti-cancer drugs.

Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway

  • Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.92-97
    • /
    • 2022
  • Lysine methylation is one of the most important histone modifications that modulate chromatin structure. In the present study, the roles of the histone lysine demethylases JMJD2a and LSD1 in CK2 downregulation-mediated senescence were investigated. The ectopic expression of JMJD2a and LSD1 suppressed the induction of senescence-associated β-galactosidase activity and heterochromatin foci formation as well as the reduction of colony-forming and cell migration ability mediated by CK2 knockdown. CK2 downregulation inhibited JMJD2a and LSD1 expression by activating the mammalian target of rapamycin (mTOR)-ribosomal p70 S6 kinase (p70S6K) pathway. In addition, the down-regulation of JMJD2a and LSD1 was involved in activating the p53-p21Cip1/WAF1-SUV39h1-trimethylation of the histone H3 Lys9 (H3K9me3) pathway in CK2-downregulated cells. Further, CK2 downregulation-mediated JMJD2a and LSD1 reduction was found to stimulate the dimethylation of Lys370 on p53 (p53K370me2) and nuclear import of SUV39h1. Therefore, this study indicated that CK2 downregulation reduces JMJD2a and LSD1 expression by activating mTOR, resulting in H3K9me3 induction by increasing the p53K370me2-dependent nuclear import of SUV39h1. These results suggest that CK2 is a potential therapeutic target for age-related diseases.