• Title/Summary/Keyword: m-cresol

Search Result 82, Processing Time 0.024 seconds

Synthesis and Properties of Poly(ester-imide) Resin for High Temperature Resistant Electrical Insulation (고내열성 전기 절연용 Poly(ester-imide) 수지의 합성 및 물성)

  • Huh, Wansoo;Lee, SangWon;Kim, Jeongyeol;Park, Leesoon;Kim, Soonhak;Haw, JungRim
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.767-771
    • /
    • 1999
  • Poly(ester-imide)(PEI) for the electrical insulation coating was synthesized and evaluated with one-step method as well as two-step method. For the synthesis of poly(ester-imide), imide repeat unit of N,N'-(4,4'-diphenylmethane) bistrimellitimide(DID) was initially made from trimellitic anhydride(TMA) and methylene dianiline(MDA), followed by the second stage reaction of esterification. One-step reaction was performed by reaction of TMA, MDA, dimethyl terephthalate(DMT), ethylene glycol(EG), and 1,3,5-tris-(2-hydroxy ethyl) isocyanurate(THEIC) in m-cresol solvent at a time. The synthesized poly(ester-imide) was cured with xylene, P-5030K(phenol-formaldehyde resin), TK-8(TDI type blocked polyisocyanate) and tetrapropyltitanate(TPT). It was found that the content of hydroxyl group, amount of DMT, and imide repeat unit played important role for the properties of electrical insulation coating film.

  • PDF

Analysis of Tridentate Schiff Base Ni(II) Complex (세자리 Schiff Base의 Ni(II) 착물의 분석)

  • Chae, Hee-Nam;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.332-340
    • /
    • 1998
  • Tridentate Schiff base ligands, $SIPH_2$, $SIPCH_2$, $HNIPH_2$, and $HNIPCH_2$ were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. Ni(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Ni(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Ni(II) complexes were quasi-reversible and diffusion-controlled as one electron by one step process Ni(II)/Ni(I). The reduction potentials of the Ni(II) complexes shifted in the positive direction in the order [$Ni(II)(HNIP)(H_2O)_3$]>[$Ni(II)(SIP)(H_2O)_3$]>[$Ni(II)(SIPC)(H_2O)_3$]>[$Ni(II)(HNIPC)(H_2O)_3$] and their dependence on ligands were not so high. Consequently the [$Ni(II)(HNIPC)(H_2O)_3$] complex among the synthesized Ni(II) complexes was found to be most stable in the DMSO solution.

  • PDF

Synthesis of Tridentate-Schiff Base Co(II) Complexes and Their Electrochemical Properties (세자리 Schiff Base Co(Ⅱ) 착물의 합성과 전기화학적 성질)

  • Chae, Hui Nam;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 1998
  • Tridentate Schiff base ligands such as $SIPH_2,\;SIPCH_2,\;HNIPH_2,\;and\; HNIPCH_2$ were prepared by the reaction of salicylaldehyde and 2-hydroxy-l-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. The structures and properties of ligands and their Co(II) complexes were investigated by elemental analysis, $^1H$NMR, IR, UV-visible spectra, and thermogravimetric analysis. The molar ratio of Schiff base to the metal of complexes was found to be 1:1. Co(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte were investigated by cyclic voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Co(II) complexes were irreversible and one electron processes by two steps in diffusion controlled reaction. The reduction potential of the Co(II) complexes was shifted to the positive direction in the order [Co(Ⅱ)$(HNIPC)(H_2O)_3$]>[Co(Ⅱ)$(HNIP)(H_2O)_3$]>[Co(II)$(SIPC)(H_2O)_3$]>[Co(Ⅱ)$(SIP)(H_2O)_3], and their dependence on ligands were not so high.

  • PDF

Synthesis of Transition Metal Cu(II) Complexes and Their Electrochemical Properties (Cu(II) 전이금속 착물의 합성과 전기화학적 성질에 관한 연구)

  • Chae, Hee-nam;Choi, Yong-kook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.719-725
    • /
    • 1998
  • Tridentate Schiff base ligands were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. And then Cu(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Cu(II) complexes were contemplated to be four-coordinated square planar configuration containing one water molecule. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Cu(II) complexes was quasi-reversible and diffusion-controlled as one electron by one step process Cu(II)/Cu(I). The reduction potentials of the Cu(II) complexes shifted in the positive direction in the order of [Cu(II)(HNIPC)($H_2O$)]>[Cu(II)(HNIP)($H_2O$)]>[Cu(II)(SIP)($H_2O$)]>[Cu(II)(SIPC)($H_2O$)].

  • PDF

Compostion of Constituents of Commercial Wood Vinegar Liquor in Korea (시판 목초액의 성분조성)

  • Kim, Sam-Kon;Kim, Kun-Soo;Lee, Yun-Hwan;Kim, Young-Hoi
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.262-268
    • /
    • 2001
  • Two commercial wood vinegar liquors prepared from Cryptomeria japonica and Quercus sp., which are used as a mineral fertilizer in Korea, were extracted using dichloromethane as a solvent, respectively. The extracts were separated into acidic, phenolic, neutral and basic fraction by acid or alkali treatment, and the compositions of each fraction were analyzed by means of GC and GC-MS. A total of 103 compounds including 26 acids, 32 phenols and 45 neutral compounds were identified. The major components were acetic, propionic and n-butyric acid, representing of $41{\sim}58%$ of the acidic fraction, guaiacol, 4-methylguaiacol and phenol, repersenting of $53.2{\sim}63.9%$ of the phenolic fraction, and furfural, 3-methyl-2-cyclopenten-2-one, 2,3-dimethyl-2-cyclopenten-1-one and 5-methyl-2-furfural in the neutral fraction. In addition to these compounds, phenolic fraction in dichloromathane extract from wood vinegar liquor of C. japonica included large amounts of vanillin, acetovanillone and tentatively identified ethylvanillyl ether while that of Quercus sp. included some amounts of syringol and 4-methylsyringol.

  • PDF

Effect of gacS and gacA Mutations on Colony Architecture, Surface Motility, Biofilm Formation and Chemical Toxicity in Pseudomonas sp. KL28

  • Choi, Kyung-Soon;Veeraragouda, Yaligara;Cho, Kyoung-Mi;Lee, Soo-O;Jo, Geuk-Rae;Cho, Kyung-Yun;Lee, Kyoung
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.492-498
    • /
    • 2007
  • GacS and GacA proteins form a two component signal transduction system in bacteria. Here, Tn5 transposon gacS and gacA (Gac) mutants of Pseudomonas sp. KL28, an alkylphenol degrader, were isolated by selecting for smooth colonies of strain KL28. The mutants exhibited reduced ability to migrate on a solid surface. This surface motility does not require the action of flagella unlike the well-studied swarming motility of other Pseudomonas sp. The Gac mutants also showed reduced levels of biofilm and pellicle formation in liquid culture. In addition, compared to the wild type KL28 strain, these mutants were more resistant to high concentrations of m-cresol but were more sensitive to $H_2O_2$, which are characteristics that they share with an rpoS mutant. These results indicate that the Gac regulatory cascade in strain KL28 positively controls wrinkling morphology, biofilm formation, surface translocation and $H_2O_2$ resistance, which are important traits for its capacity to survive in particular niches.

Mechanical Properties of Carbon Fiber/Nylon 6 Composite Introducing Coupling Agent (II) -Increasing Interfacial Strength of Composite- (카플링제를 도입한 탄소섬유/나일론 6 복합재료의 기계적 성질(II) -복합재료의 계면강도 증가-)

  • Park, Chan Hun;Lee, Yang Hun;Shin, Eun Joo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 1997
  • To improve the interfacial bonding of carbon fiber-nylon 6 composite, carbon fiber(CF) were oxidized by nitric acid treatment, and two types of graft polymer(GP) of nylon 6-g-polyacrylamide (PAAm) -water dispersable GP(WDGP) and m-cresol solu ble GP(CSGP) were treated as coupling agents. Introduction of polar groups such as -COOH, -OH, etc, on the surface of the oxidized CF was confirmed by IR spectra. The stem polymer of nylon 6 in the coupling agent (GP) could be compatible with'matrix nylon 5, and the grafted branch of PAAm on GP could react to the polar groups on the oxidized CF in composite. The interfacial strength was measured by the transverse tensile test to the fiber direction for single CF embedded nylon 6 film especially prepared and by the pull-out test method. The interfacial strength of the composite reinforced with oxidized CF is greater than that reinforced with unoxidized CF. The interfacial strength of the composite was increased by treatment of coupling agents(GPs) considerably, and the increasing tendency by the WDGP is greater than that by the CSGP. The optimum conditions of coupling agent treatment are as follows: the concentration, adsorption tlme of GP, and curing temperature are 2%, 20 minutes, and $170^{\circ}$, respectively.

  • PDF

Antimicrobial Constituents from the Bacillus megaterium LC Isolated from Marine Sponge Haliclona oculata

  • Pham, Viet Cuong;Nguyen, Thi Kim Cuc;Vu, Thi Quyen;Pham, Thanh Binh;Phan, Van Kiem;Nguyen, Hoai Nam;Nguyen, Tien Dat
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.202-205
    • /
    • 2014
  • Three compounds including 7,7-bis(3-indolyl)-p-cresol (1), cyclo-(S-Pro-R-Leu) (2) and cyclo-(S-Pro-R-Val) (3) were isolated from the strain of Bacillus megaterium LC derived from the marine sponge Haliclona oculata. All the isolated compounds showed antimicrobial activity at MIC values ranging from 0.005 to $5{\mu}g/mL$ against Gram-negative bacteria Vibrio vulnificus and V. parahaemolyticus, gram-positive bacteria Bacillus cereus and Micrococcus luteus, and the dermatophyte Trichophyton mentagrophytes. The results suggested that these compounds might have potential to be developed as agents treating dermatosis and controlling vibriosis in aquaculture.

Synthesis of Aromatic and Aliphatic Compound from Kraft Oak Lignin and Acetosolve Straw Lignin by Thermochemical Liquefaction (참나무 크라프트 리그닌과 볏짚 아세토솔브 리그닌의 열-화학적 분해에 의한 방향족(Aromatic)과 지방족(Aliphatic)화합물의 합성)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Kraft oak lignin and ricestraw lignin from acetosolve pulping were dissolved in 50/50 mixture of tetralin/m-cresol solvent. The dissolved lignin was reacted in the pressurized autoclave which was operating at $350{\sim}500^{\circ}C$ of reaction temperature and 10~20 atms of reaction pressure respectively_Hydrogen pressure of 60~80kg/$cm^2$ was exercising into the pressurized autoclave reactor to create thermochemical hydrogenolysis reaction. It was identified by GLC, GC-MS and HPLC that the alkyl-aryl-${\beta}$-O-4 ether bond of lignin was cleaved and degraded into various smaller molecules of aromatic compound such as phenols and cresols under the reaction conditions around $300^{\circ}C$ and 10 atms of reaction temoerature and pressure. Hydrogenolysis reaction of lignin compound which was done above $500^{\circ}C$ of reaction temperature and 20 atms of reaction pressure showed that the amount of aromatic compound such as phenols and cresols degraded from reactant lignin was decreasing with newly present and increasing water out of product mixtures. It was supposed that new aliphatic compound of high molecular weight hydrocarbon is composed due to higher reaction temperature and pressure of hydrogenolysis reaction such as $500^{\circ}C$ and 20 atms, even though it was almost impossible, to identify what kind of degraded products it was by HPLC.

  • PDF

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhdrogenolysis Method (II) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성 (II))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.80-84
    • /
    • 1991
  • Lignocellulosic biomass including acetosolv ricestraw and spruce lignin were liquefied and converted into liquid hydrocarbons by catalytic hydroliquefaction reaction. These experimental works were carried out in 1-liter-capacity autoclave using 50% tetralin and m-cresol solution respectively as soluble solvent and Ni. Pd. Fe and red mud as catalyst. $H_2$ gas was supplied into the reactor for escaltion of deoxhydroenolysis reaction. Catalyst concentrations were 1 % of raw material based on weight. The ratio between raw materials and soluble solvent are 1g and 10cc. The reaction conditions are 400-$700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure. The highest yield of hydrocarbon, so called "product oil" showed 32% and 5.5% of lowest char formation when red mud was used as catalyst. The product oil yields from those of other catalysts were in the range of 20-29%. The influence of different initial hydrogen pressures was examined in the range d 30-50 atms. A minimum pressure of 35 atms was necessary to obtain a complete recovery of souble solvent for recycling.

  • PDF