• 제목/요약/키워드: m-GDI

검색결과 23건 처리시간 0.023초

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

공간적 디인터레이싱을 위한 컨텐츠 기반 적응적 보간 기법 (Content Adaptive Interpolation for Intra-field Deinterlacting)

  • 김원기;진순종;정제창
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.1000-1009
    • /
    • 2007
  • 본 논문에서는 공간적인 디인터레이싱을 위한 컨텐츠 기반 적응적 보간 기법을 제안한다. 제안하는 알고리즘은 전처리와 컨텐츠 분석, 컨텐츠에 따른 적응적 보간의 3 단계로 구성된다. 또한 적응적 보간 방식으로써 변형된 에지기반 라인 평균 방식과 그레디언트 기반 방향성 보간, 윈도우 매칭 방식의 세 가지 보간 방식을 제안한다. 각각의 보간 방식은 공간적인 영상 특징에 따라 다양한 성능을 나타낸다. 따라서 각각의 보간할 픽셀 영역은 그레디언트 검출을 통해 영역 특징을 분석하고 네 가지 카테고리로 분류된다. 이러한 분류 결과를 기반으로 각각에 적합한 디인터레이싱 방법을 사용함으로써 최적의 성능을 구현할 수 있다. 다양한 영상에 대한 실험을 통해 제안한 방식이 기존의 방식에 비해 가장 좋은 성능을 보임을 확인하였다.

연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 - (A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load -)

  • 이상만;정영식;채재우
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.