• Title/Summary/Keyword: lytic activity

Search Result 132, Processing Time 0.024 seconds

Study of Cytotoxicity of an Actinomycete Isolated in Korea (토양에서 분리한 방선균의 세포 독성에 관한 연구)

  • Park, Joon-Koo;Choi, Boung-Don;Kim, Seung-Chul;Ryeom, Kon
    • Environmental Analysis Health and Toxicology
    • /
    • v.8 no.3_4
    • /
    • pp.7-12
    • /
    • 1993
  • An Actinomycete strain isolated from Mt. Dea-Dun had a strong antifungal activity. The culture brith produced by isolated strain showed only antifungal activity against fungi with the exception of yeast and bacteria. It was heat stable, dissolved in ehtylacetate. The concentrated antifungal agent showed cytotoxicity against HEP-2 and HeLa as tumor cell line, and showed weak cytotoxicity against VERO 36 as normal cell line. Morphological and physiological characteristics were tested with isolated strain. The spore color of isolated strain was gray. It had a short chain and produced brown colored lytic substance in yeast extract-malt agar. The cell wall of isolated strain was composed of meso-DAP, and we suggested it as genus Actinomadura. In the existing of chemical inhibitor, isolated strain grew on the condition of 0.0001% crystal violet, 0.1% phenol, 0.01% sodium azide and 10% sodium chloride. Carbon utilization of isolated strain was shown that glucose, sucrose, manitol and sodium citrate were well utilized.

  • PDF

Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins

  • Yulu Wang;Xue Wang;Xin Liu;Bokun Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1189-1196
    • /
    • 2024
  • Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

Bioproduction of trans-10,cis-12-Conjugated Linoleic Acid by a Highly Soluble and Conveniently Extracted Linoleic Acid Isomerase and an Extracellularly Expressed Lipase from Recombinant Escherichia coli Strains

  • Huang, Mengnan;Lu, Xinyao;Zong, Hong;Zhuge, Bin;Shen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • The low solubility and high-cost recovery of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) are key problems in the bioproduction of high value-added conjugated linoleic acid (CLA). To improve the solubility of recombinant PAI, six chaperone proteins were coexpressed with PAI. Introduction of GroELS proteins dramatically improved the PAI solubility from 29% to 97%, with increased activity by 57.8%. Combined expression of DnaKJ-GrpE and GroELS proteins increased the activity by 11.9%. In contrast, coexpression of DnaKJ-GrpE proteins significantly reduced the activity by 57.4%. Plasmids pTf16 harboring the tig gene and pG-Tf2 containing the tig and groEL-groES genes had no visible impact on PAI expression. The lytic protein E was then introduced into the recombinant Escherichia coli to develop a cell autolysis system. A 35% activity of total intracellular PAI was released from the cytoplasm by suspending the lysed cells in distilled water. The PAI recovery was further improved to 81% by optimizing the release conditions. The lipase from Rhizopus oryzae was also expressed in E. coli, with an extracellular activity of 110.9 U/ml. By using the free PAI and lipase as catalysts, a joint system was established for producing CLA from sunflower oil. Under the optimized conditions, the maximum titer of t-10,c-12-CLA reached 9.4 g/l. This work provides an effective and low-cost strategy to improve the solubility and recovery of the recombinant intracellular PAI for further large-scale production of CLA.

Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide

  • Lee, Ju-Yeon;Yang, Sung-Tae;Kim, Hyo-Jeong;Lee, Seung-Kyu;Jung, Hyun-Ho;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.586-592
    • /
    • 2009
  • The bactenecin is an antibacterial peptide with an intramolecular disulfide bond. We recently found that homodimeric bactenecin exhibits more potent antibacterial activity than the monomeric form and retains its activity at physiological conditions. Here we assess the difference in the modes of antibiotic action of homodimeric and monomeric bactenecins. Both monomeric and dimeric bactenecins almost completely killed both Staphylococcus aureus and E. coli within 10-30 min at concentrations of $8-16\;{\mu}M$. However, exposure to liposomes elicited an increase in the fluorescence quantum yield from a tryptophan-containing monomeric analog, while the homodimeric analog showed a significant reduction in fluorescence intensity. Moreover, unlike the monomer, the homodimer displayed apparent membrane-lytic activity enabling release of various sized dyes from liposomes, and rapidly and fully depolarized the S. aureus membrane. Together, our results suggest that homodimeric bactenecin forms pores in the bacterial membrane, while monomeric one penetrates through the membrane to target intracellular molecules/organelles.

Isolation of Lichen-forming Fungi from Hungarian Lichens and Their Antifungal Activity Against Fungal Pathogens of Hot Pepper Anthracnose

  • Jeon, Hae-Sook;Lokos, Laszlo;Han, Keon-Seon;Ryu, Jung-Ae;Kim, Jung-A;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.38-46
    • /
    • 2009
  • Lichen-forming fungi (LEF) were isolated from 67 Hungarian lichen species from ascospores or thallus fragments. LFF were successfully isolated from 26 species with isolation rate of 38.8%. Of the total number of isolation from ascospores (27 species) and thallus fragments (40 species), 48% and 32.5% of the species were successfully isolated, respectively. Comparison of rDNA sequences of ITS regions between the isolated LFF and the original thallus confirmed that all the isolates originated from the thallus fragments were LEF. The following 14 species of LEF were newly isolated in this study; Acarospora cervina, Bacidia rubella, Cladonia pyxidata, Lasallia pustulata, Lecania hyaline, Lecanora argentata, Parmelina tiliacea, Parmotrema chinense, Physconia distorta, Protoparmeliopsis muralis, Ramalina pollinaria, Sarcogyne regularis, Umbilicaria hirsuta, Xanthoparmelia conspersa and X. stenophylla. Antifungal activity of the Hungarian LFF was evaluated against plant pathogenic fungi of Colletotrichum acutatum, C. coccodes and C. gloeosporioides, causal agent of anthracnose on hot pepper. Among the 26 isolates, 11 LFF showed more than 50% of inhibition rates of mycelial growth of at least one target pathogen. Especially, LFF of Evernia prunastri, Lecania hyalina and Lecanora argentata were remarkably effective in inhibition of mycelial growth of all the tested pathogens with antibiotic mode of action. On the other hands, five isolates of Cladonia furcata, Hypogymnia physodes, Lasallia pustulata, Ramalina fastigiata and Ramalina pollinaria exhibited fungal lytic activity against all the three pathogens. Among the tested fungal pathogens, C. coccodes seemed to be most sensitive to the LFF. The Hungarian LFF firstly isolated in this study can be served as novel bioresources to develop new biofungicides alternative to current fungicides to control hot pepper anthracnose pathogenic fungi.

Antifungal Activity and Exoenzyme Production of Several Bacteria Antagonistic to Trichoderma spp. Causing Green Mold Disease (버섯 푸른곰팡이균에 대한 길항세균의 항균활성과 세포외 분비효소 생성능)

  • Hyun, Soung-Hee;Min, Bong-Hee
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2002
  • Trichoderma spp. are the aggressive causal agents for green mold disease on oyster mushroom (Pleurotus spp.) cultivation. Antifungal bacteria (KATB 99121, KATB 99122 and KATB 99123 strains) were isolated from the compost for Pleurotus ostreatus. Among these bacterial strains, KATB 99121 strain showed an excellent inhibitory activity to the pathogens for green molds such as T. harzianum, T. viride and T. hamatum and an animal pathogen, Candida albicans, but did not affect on the culture of Pleurotus ostreatus (2209, Chunchu 2 and Wonhyung strains). KATB 99121 strain secreted amylolytic, proteolytic and cellulolytic exoenzymes. KATB 99122 and KATB 99123 strains excreted amylolytic, proteolytic, cellulolytic, lipolytic exoenzymes and showed ${\beta}$-glucosidase activity. Further studies will be conducted on the development of microbial fungicides using the antagonistic bacteria for the control of green mold disease on Pleurotus spp.

Optimization of Medium Components for the Production of Antagonistic Lytic Enzymes Against Phytopathogenic Fungi and Their Biocontrol Potential

  • Lee, Yong Seong;Neung, Saophuong;Park, Yun Suk;Kim, Kil Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.299-305
    • /
    • 2014
  • In this paper, fractional factorial screening design (FFSD) and central composition design (CCD) were used to optimize the medium components for producing chitinase and gelatinase by Lysobacter capsici YS1215. Crab shell powder, nutrient broth and gelatin were proved to have significant effects on chitinase and gelatinase activity by FFSD first. An optimal medium was obtained by using a three factor CCD, which consisted of nutrient broth of $2.0gL^{-1}$, crab shell powder of $2.0gL^{-1}$ and gelatin of $1.0gL^{-1}$, respectively with the highest chitinase activity ($3.34UmL^{-1}$) and gelatinase activity ($14.15UmL^{-1}$). This value was 3.76 and 1.11 fold of the chitinase and gelatinase activity, respectively, compared to the lowest productive medium in the design matrix. In investigating potential of these enzymes partially purified from L. capsici YS1215 for biotechnological use, the crude enzymes was found to be inhibition against pathogenic fungal mycelia: Colletotrichum gleosporioides, Phytophthora capsici, and Rhizoctonia solani. In this study, we demonstrated the optimal medium for producing the chitinolytic and gelatinolytic enzymes by the strain YS1215 and the role of their enzymes that may be useful for further development of a biotechnological use and agricultural use for biological control of phytopathogenic fungi.

Effect of Levamisole on Immunomodulation of Eels (Anguilla japonica) In Vitro (In vitro에서 Levamisole이 양식뱀장어의 면역조절작용에 미치는 영향)

  • Choi, Min-Soon;Park, Kwan-Ha;Joung, Kyung-Min;Shim, Hyun-Bin;Yun, Sung-Ho
    • Journal of fish pathology
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 1999
  • The immunomodulatory effects of levamisole (LMS) were evaluated in leucocytes of eels in vitro. Proliferation of lymhocytes treated with T-cell mitogen (Con A or PHA) was markedly inhibited by LMS in a dose dependent manner. B cell mitogen (LPS), in contrast, slightly increased the proliferaion. On the other hand, production of MIF and MAF when treated with Con A was increased in a dose-dependent way. NK cell activities were somewhat increased when LMS was pretreated and this augmentation was due to an increase in binding capacity of effector-target cell, but not due to the target cell lytic activity of effector cells. Phagocytic activity, superoxide anion formation, hydrogen peroxide formation and lysozyme activity of leucocytes were enhanced by LMS in a dose related-manner. These results suggest that LMS might modulate the immmune responses by activation of cytokine production and by augmentation of leukocyte activity but not by increment of immunocompetent cell numbers.

  • PDF

Bactericidal Effect of Cecropin A Fused Endolysin on Drug-Resistant Gram-Negative Pathogens

  • Lim, Jeonghyun;Hong, Juyeon;Jung, Yongwon;Ha, Jaewon;Kim, Hwan;Myung, Heejoon;Song, Miryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.816-823
    • /
    • 2022
  • The rapid spread of superbugs leads to the escalation of infectious diseases, which threatens public health. Endolysins derived from bacteriophages are spotlighted as promising alternative antibiotics against multi-drug resistant bacteria. In this study, we isolated and characterized the novel Salmonella typhimurium phage PBST08. Bioinformatics analysis of the PBST08 genome revealed putative endolysin ST01 with a lysozyme-like domain. Since the lytic activity of the purified ST01 was minor, probably owing to the outer membrane, which blocks accessibility to peptidoglycan, antimicrobial peptide cecropin A (CecA) was fused to the N-terminus of ST01 to disrupt the outer membrane. The resulting CecA::ST01 has been shown to have increased bactericidal activity against gram-negative pathogens including Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Enterobacter cloacae and the most affected target was A. baumannii. In the presence of 0.25 µM CecA::ST01, A. baumannii ATCC 17978 strain was completely killed and CCARM 12026 strain was wiped out by 0.5 µM CecA::ST01, which is a clinical isolate of A. baumannii and resistant to multiple drugs including carbapenem. Moreover, the larvae of Galleria mellonella could be rescued up to 58% or 49% by the administration of CecA::ST01 upon infection by A. baumannii 17978 or CCARM 12026 strain. Finally, the antibacterial activity of CecA::ST01 was verified using 31 strains of five gram-negative pathogens by evaluation of minimal inhibitory concentration. Thus, the results indicate that a fusion of antimicrobial peptide to endolysin can enhance antibacterial activity and the spectrum of endolysin where multi-drug resistant gram-negative pathogens can be efficiently controlled.