• Title/Summary/Keyword: lung epithelial cells

Search Result 243, Processing Time 0.031 seconds

Effect of $H_2O_2$ on Alveolar Epithelial Barrier Properties (폐상피세포 장벽에 대한 $H_2O_2$의 영향)

  • Suh, Duk-Joon;Cho, Se-Heon;Kang, Chang-Woon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.236-249
    • /
    • 1993
  • Background: Among the injurious agents to which the lung airspaces are constantly exposed are reactive species of oxygen. It has been widely believed that reactive oxygen species may be implicated in the etiology of lung injuries. In order to elucidated how this oxidant causes lung cell injury, we investigated the effects of exogenous $H_2O_2$ on alveolar epithelial barrier characteristics. Methods: Rat type II alveolar epithelial cells were plated onto tissue culture-treated polycarbonate membrane filters. The resulting confluent monolayers on days 3 and 4 were mounted in a modified Ussing chamber and bathed on both sides with HEPES-buffered Ringer solution. The changes in short-circuit current (Isc) and monolayer resistance (R) in response to the exogenous hydroperoxide were measured. To determine the degree of cellular catalase participation in protection against $H_2O_2$ injury to the barrier, experiments were repeated in the presence of 20 mM aminotriazole (ATAZ, an inhibitor of catalase) in the same bathing fluid as the hydroperoxide. Results: These monolayers have a high transepithelial resistance (>2000 ohm-$cm^2$) and actively transport $Na^+$ from apical fluid. $H_2O_2$(0-100 mM) was then delivered to either apical or basolateral fluid. Resulting indicated that $H_2O_2$ decreased Isc and R gradually in dose-dependent manner. The effective concentration of apical $H_2O_2$ at which Isc (or R) was decreased by 50% at one hour ($ED_{50}$) was about 4 mM. However, basolateral $H_2O_2$ exposure led to $ED_{50}$ for Isc (and R) of about 0.04 mM. Inhibition of cellular catalase yielded $ED_{50}$ for Isc (and R) of about 0.4 mM when $H_2O_2$ was given apically, while $ED_{50}$ for basolateral exposure to $H_2O_2$ did not change in the presence of ATAZ. The rate of $H_2O_2$ consumption in apical and basolateral bathing fluids was the same, while cellualr catalase activity rose gradually with time in culture. Conclusion: Our data suggest that basolateral $H_2O_2$ may affect directly membrane component (e.g., $Na^+,\;K^+$-ATPase) located on the basolateral cell surface. Apical $H_2O_2$, on the other hand, may be largely degraded by catalase as it passes through the cells before reaching these membrane components. We conclude that alveolar epithelial barrier integrity as measured by Isc and R are compromised by $H_2O_2$ being relatively sensitive to basolateral (and insensitive to apical) $H_2O_2$.

  • PDF

Tilianin Inhibits MUC5AC Expression Mediated Via Down-Regulation of EGFR-MEK-ERK-Sp1 Signaling Pathway in NCI-H292 Human Airway Cells

  • Song, Won-Yong;Song, Yong-Seok;Ryu, Hyung Won;Oh, Sei-Ryang;Hong, JinTae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In the human airway, mucus exists to protect the respiratory system as a primary barrier of the innate immune system. However, hyperexpressed mucus limits airflow, resulting in a decrease of lung function. Among more than 20 mucin family members, MUC5AC and MUC5B are major glycoproteins in human airway mucus. The epidermal growth factor receptor (EGFR) signaling pathway is one of the mechanisms of these mucins expression and specificity protein-1 (Sp1) transcription factor is the downstream signal of this pathway, playing pivotal roles in mucin expression. Even though there are some drugs for treating mucus hypersecretion, no drug has proven effects on humans. We found that the flavonoid tilianin regulated MUC5AC expression and also inhibited Sp1 phosphorylation. In this study, we investigated how tilianin would modulate EGFR signaling and regulate mucin production. In conclusion, tilianin inhibited MUC5AC expression mediated via modulating the EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway epithelial cells. This study may provide the basis for the novel treatment of mucus hypersecretion.

Screening of Anti-cancer Compounds Originated from Filamentous Fungi (Monascus sp.) (사상성 곰팡이 (Monascus sp.) 유래 항암 물질의 탐색)

  • Sin, Yeong-Min;Park, Hae-Ryoun;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.671-676
    • /
    • 2005
  • In this study, we investigated the antioxidant effect of extract from Monascus pillosus, on the human wild-type p53 and p21 expressing A549 lung epithelial cell line and MCF-7 mammary adenocarcinoma cell line stimulated by NO. $P21^{waf/cip1}$ was identified as a gene induced in senescent cells. It is a cyclin-dependent kinase inhibitor and has been shown to cause cell cycle arrest and apoptosis. While p53-regulated stimulation of p21 appears to be central for the permanent growth-arrest, the role of p21 in p53-triggered cell death is unclear. Low dose of sodium nitroprusside (SNP) induced the development of senescence associated with increased expression of p53 and p21 in A549 cells. Inhibition of p21 transactivating activity requires high level correlates with the amount of p53 necessary to cause cell death. Association of p21 and p53 results in inhibition of p21-stimulated transcription. This requires a higher p53 level than is necessary for transcriptional activation of endogenous p53-responsive gene but correlates well with the level of p53 necessary to cause cell death. Exposure to W-1 inhibited oxidative stresses-induced senescence-like arrest, resulting in a significant reduction in p53 and p21 steady state levels. These results suggest that p53 and p21 play a central role in the onset of senescence. Thus, it is important to emphasize control of oxidative balance in tumor prevention and aging.

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren;Weichao Lv;Yue Ding;Lei Wang;ZhengGuo Cui;Renshi Li;Jiangwei Tian;Chaofeng Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.543-551
    • /
    • 2023
  • Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.

Role of Protease Activated Receptor 2 (PAR2) in Aspergillus Protease Allergen Induces Th2 Related Airway Inflammatory Response (Aspergillus 단백분해효소 알러젠에 의해 유도된 Th2 관련 기도염증반응에서 protease activated receptor 2 (PAR2)의 역할)

  • Yu, Hak-Sun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.503-510
    • /
    • 2010
  • Most allergens have protease activities, suggesting that proteases may be a key link between Th2-type immune reactions in allergic responses. Protease activated receptor (PAR) 2 is activated via the proteolytic cleavage of its N-terminal domain by proteinases. To know the role of PAR2 in Aspergillus protease allergen activated Th2 immune responses in airway epithelial cells, we investigated and compared immune cell recruitment and level of chemokines and cytokines between PAR2 knock out (KO) mice and wild type (WT) mice. There were evident immune cell infiltrations into the bronchial alveolar lavage fluid (BALF) of WT mice, but the infiltrations in PAR2 KO mice were significantly lowered than those of WT mice. The IL-25, TSLP, and eotaxin gene expressions were profoundly increased after Aspergillus protease, but their expression was significantly lowered in PAR2 KO mice in this study. Compared to PAR2 KO mice, OVA specific IgE concentrations in serum of WT mice were quite increased; moreover, the IgE level of PAR2 KO mice was lower than in WT mice. The IL-25 expression by Aspergillus protease stimulation was significantly reduced by p38 specific inhibitor treatment. In this study, we determined that Th2 response was initiated with IL-25 and TSLP mRNA up-regulation in lung epithelial cells via PAR2 after Aspergillus protease allergen treatment.

Triptolide-induced Transrepression of IL-8 NF-${\kappa}B$ in Lung Epithelial Cells (폐상피세포에서 Triptolide에 의한 NF-${\kappa}B$ 의존성 IL-8 유전자 전사활성 억제기전)

  • Jee, Young-Koo;Kim, Yoon-Seup;Yun, Se-Young;Kim, Yong-Ho;Choi, Eun-Kyoung;Park, Jae-Seuk;Kim, Keu-Youl;Chea, Gi-Nam;Kwak, Sahng-June;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.52-66
    • /
    • 2001
  • Background : NF-${\kappa}B$ is the most important transcriptional factor in IL-8 gene expression. Triptolide is a new compound that recently has been shown to inhibit NF-${\kappa}B$ activation. The purpose of this study is to investigate how triptolide inhibits NF-${\kappa}B$-dependent IL-8 gene transcription in lung epithelial cells and to pilot the potential for the clinical application of triptolide in inflammatory lung diseases. Methods : A549 cells were used and triptolide was provided from Pharmagenesis Company (Palo Alto, CA). In order to examine NF-${\kappa}B$-dependent IL-8 transcriptional activity, we established stable A549 IL-8-NF-${\kappa}B$-luc. cells and performed luciferase assays. IL-8 gene expression was measured by RT-PCR and ELISA. A Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation and an electromobility shift assay was done to analyze NF-${\kappa}B$ DNA binding. p65 specific transactivation was analyzed by a cotransfection study using a Gal4-p65 fusion protein expression system. To investigate the involvement of transcriptional coactivators, we perfomed a transfection study with CBP and SRC-1 expression vectors. Results : We observed that triptolide significantly suppresses NF-${\kappa}B$-dependent IL-8 transcriptional activity induced by IL-$1{\beta}$ and PMA. RT-PCR showed that triptolide represses both IL-$1{\beta}$ and PMA-induced IL-8 mRNA expression and ELISA confirmed this triptolide-mediated IL-8 suppression at the protein level. However, triptolide did not affect $I{\kappa}B{\alpha}$ degradation and NF-$_{\kappa}B$ DNA binding. In a p65-specific transactivation study, triptolide significantly suppressed Gal4-p65T Al and Gal4-p65T A2 activity suggesting that triptolide inhibits NF-${\kappa}B$ activation by inhibiting p65 transactivation. However, this triptolide-mediated inhibition of p65 transactivation was not rescued by the overexpression of CBP or SRC-1, thereby excluding the role of transcriptional coactivators. Conclusions : Triptolide is a new compound that inhibits NF-${\kappa}B$-dependent IL-8 transcriptional activation by inhibiting p65 transactivation, but not by an $I{\kappa}B{\alpha}$-dependent mechanism. This suggests that triptolide may have a therapeutic potential for inflammatory lung diseases.

  • PDF

Expression of Transforming Growth Factor-Beta in Patients with Interstitial Lung Diseases (ILD) (간질성 폐질환환자에서 Transforming growth factor-beta의 발현에 관한 연구)

  • Park, Sung-Soo;Lee, Kyung-Sang;Yang, Suck-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Lee, Dong-Hoo;Lee, Jung-Dal;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.164-172
    • /
    • 1996
  • Background : Transforming growth factor-$\beta$(TGF-$\beta$) may play a role in a variety of fibroproliferative disorders including pulmonary fibrosis via the induction of extracellular matrix accumulation. TGF-$\beta$ not only stimulates extracellular matrix production, but also decreases matrix degradation. Interstial lung diseases have demonstrated marked expression of TGF-$\beta$. Methods : To evaluate the possible role of TGF-$\beta$ in human pulmonary fibrosis, by using neutralizing antibody of TGF-$\beta$ we investigated immunohistochemically the expression of TGF-$\beta$ in the formalin-fixed, paraffin-embedded tissue sections of the 5 normal cases for the control, and a couple of pieces of tissues taken out of 3 cases with idiopathic pulmonary fibrosis, 3 cases with ILD from bleomycin toxicity, 3 cases with ILD from sarcoidosis, and 3 cases with ILD from eosinophilic granuloma. Results : In the 5 normal cases for the control, the TGF-$\beta$ was expressed in bronchial and alveolar epithelial cells. Up-regulation of the TGF-$\beta$ expression was showed in the interstitial fibroblast cells of alveolar septa in 5 pieces and proliferated alveolar pneumocytes in 1 piece among 6 pieces tissues taken out of 3 cases with idiopathic pulmonary fibrosis. Also up-regulation of the TGF-$\beta$ expression was showed in alveolar lining pneumocytes, intra-alveolar mononuclear cells, and epithelioid cells in most of cases of ILD from bleomycin toxicity, sarcoidosis and eosinophilic granuloma. Conclusion : These findings suggest that up-regulation of the TGF-$\beta$are involved in pathogenesis of interstitial lung fibrosis from variety of causes.

  • PDF

Analysis of Specificity for Tumor Marker CYFRA 21-1 in Patients with Pulmonary Tuberculosis (폐결핵 환자에서 종양표지자 CYFRA 21-1의 특이도 분석)

  • Ha, Hyun-Cheol;Lee, Jae-Sung;Song, Sun-Dae;Kim, Cheol-Min;Lee, Min-Gi;Kim, In-Joo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.290-300
    • /
    • 1998
  • Background: CYFRA 21-1 is a tumor marker which measures a fragment of cytokeratin 19 expressed by epithelial cells in bronchus. It is known that cytokeratin 19 is abundant in squamous epithelial cell cancer of the lung. However, if the incidence of elevated serum CYFRA 21-1 level in patients with benign lung diseases or pulmonary tuberculosis with severe parenchymal damage is high the specificity of CYFRA 21-1 could be decreased. The purpose of this study is to investigate the changes of serum CYFRA 21-1 according to the degree of parenchymal damage and the usefulness of CYFRA 21-1 for diagnosing possibly combined lung cancer in patients with pulmonary tuberculosis. Method: We studied the changes of serum CYFRA 21-1 according to the sputum AFB stain, radiologic manifestation and history of treatment in 81 patients with pulmonary tuberculosis, and 20 healthy persons, 25 patients with lung cancer, as a control group. CYFRA 21-1 concentration in serum was quantified by the immunoradiometry assay(Centocor$^{(R)}$). Result: The results were as follow; Serum CYFRA 21-1 level was significantly lower in patients with pulmonary tuberculosis($1.54{\pm}1.19ng/mL$, p<0.01) as compared to patients with lung cancer($12.25{\pm}15.97ng/mL$), and was slightly higher than the level in heathy persons($0.90{\pm}0.49ng/mL$) but there was no significant difference. Serum CYFRA 21-1 level was below the cut-off value of 3.3ng/mL in 95 percent of patients with pulmonary tuberculosis but it was above the cut-off value in 64 percent of patients with lung cancer. Serum CYFRA 21-1 level was significantly higher in the initial treatment group($1.91{\pm}1.55ng/mL$, p<0.05) as compared to the treatment. failure group ($0.92{\pm}0.30ng/mL$). According to the sputum AFB smear, serum CYFRA 21-1 level in patients with negative result was slightly higher than the level in patients with positive result but there was no significant difference. According to the radiologic manifestation, serum CYFRA 21-1 level was significantly higher in patients with infiltrative lesion ($2.15{\pm}1.63ng/mL$, p<0.01) as compared to patients with destructive lesion ($l.04{\pm}0.54ng/mL$). As the size of cavity or destructive lesion was larger, the level was significantly lower(p<0.05). Conclusion: As serum CYFRA 21-1 level was significantly higher in the initial treatment group and patients with infiltrative lesion, it suppose to be closely related with the degree of parenchymal damage of the lung of the pulmonary tuberculosis. However CYFRA 21-1 could be useful method for diagnosing lung cancer even in patients with pulmonary tuberculosis combined with lung cancer because of the fact that it was below the cutoff value of 3.3ng/mL in 95 percent of patients with pulmonary tuberculosis.

  • PDF

Preliminary Study for Elevated Serum CXCL10 and CXCL11 in Active Pulmonary Tuberculosis Compared with the Other Pulmonary Diseases (타 폐질환과 비교를 통한 활동성 결핵에서 혈중 CXCL10과 CXCL11 증가의 의의)

  • Park, Mi Young;Kim, Shine Young;Hwang, Sang-Hyun;Kim, Ji-Eun;Lee, Min Ki;Lee, Chang-Hun;Lee, Eun-Yup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.205-210
    • /
    • 2009
  • Background: CXCL10 and CXCL11, which are family of CXCR3 ligands, are expressed by lymphocytes and even by bronchial epithelial cells if the cellular immunity is activated. This study evaluated the potential utility of CXCL10 and CXCL11 in the serum for active pulmonary tuberculosis in comparison with lung cancer, which activates the cellular immunity, and benign lung diseases. Methods: Patients who newly visited Pusan National University Hospital from January 2007 to December 2007 and were suspected of having lung cancer or tuberculosis were enrolled prospectively. The patients were classified pathologically and clinically into three groups, 47 with lung cancer, 18 with active pulmonary tuberculosis and 38 control patients with benign pulmonary disease. ELISA was used to determine the levels of CXCL10 and CXCL11 were determined in the serum. Results: The level of CXCL10 and CXCL11 were significantly higher in the active pulmonary tuberculosis group than in the lung cancer and benign lung disease groups (p<0.001, Kruskal-Wallis). The level of CXCL11 was significantly higher in the lung cancer group than in the benign pulmonary disease group, but there was no significant difference in level of CXCL10 between the three groups (p<0.001, p=0.655, respectively, Mann-Whitney U). The level of CXCL10 in patients with stage III+IV lung cancer was significantly higher than those with stage I+II, but there was no significant difference in the level of CXCL11 between the groups (p<0.001, p=0.07, respectively, Mann-Whitney U). There was no significant difference in the level of CXCL10 and CXCL11 between those with the presence and absence of lung cancer metastasis. There was a significant correlation between the level of CXCL10 and CXCL11 (r=0.223, p<0.001). Conclusion: CXCL10 and CXCL11 may be a potential useful markers for active pulmonary tuberculosis if used alongside other diagnostic methods.

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.