• Title/Summary/Keyword: lung epithelial cells

Search Result 246, Processing Time 0.032 seconds

Preliminary Study of Protective Effects of Flavonoids against Radiation-induced Lung Injury in Mice

  • Wang, Juan;Xu, Heng-Wei;Li, Bao-Sheng;Zhang, Jian;Cheng, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6441-6446
    • /
    • 2012
  • Background: Radiation therapy plays an important role in lung carcinoma treatment. However, the incidence of symptomatic radiation-induced lung injury is high. This study aimed to evaluate radioprotective effects of flavonoids extracted from Astragalus complanatus and mechanisms of action against radiation damage. Methods: Alteration in antioxidant status and levles of several cytokines were investigated in BABL/C mice treated with 4 mg/kg b.wt. flavonoids after exposure to 10Gy thoracic radiation. Results: Serum levels of SOD in the flavonoids+radiation group were significantly higher compared to the radiation control group, while TGF-${\beta}1$ and IL-6 were lower. Mice in the radiation control group displayed more severe lung damage compared with the flavonoids+radiation group. The expression of TGF-${\beta}1$ and TNF-${\alpha}$ in the radiation control group was markedly increased in alveolar epithelial cells and macrophages of the alveolar septum. Conclusions: From the results of the present study, flavonoids could be excellent candidates as protective agents against radiation-induced lung injury.

Inhibitory Mechanism on NF-${\kappa}B$ Transactivation by Dexamethasone in Pulmonary Epithelial Cells (폐상피세포에서 Dexamethasone에 의한 NF-${\kappa}B$ Transactivation 억제기전에 관한 연구)

  • Lee, Kye-Young;Kim, Yoon-Seop;Ko, Mi-Hye;Park, Jae-Seok;Jee, Young-Koo;Kim, Keun-Youl;Kwak, Sahng-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.682-698
    • /
    • 2000
  • Glucocorticoid receptor (GR) functions as a suppressor of inflammation by inhibiting the expression of many cytokine genes activated by NF-${\kappa}B$. The goal of this study is to investigate the mechanism by which GR repress NF-${\kappa}B$ activation in lung epithelial cells. We used A549 and BEAS-2B lung epithelia! cell lines. Using Ig$G{\kappa}$-NF-${\kappa}B$ luciferase reporter gene construct, we found that dexamethasone significantly suppressed TNF-$\alpha$-induced NF-${\kappa}B$ activation and the overexpression of GR showed dose-dependent reduction of TNF-$\alpha$-induced NF-${\kappa}B$ activity in both cell lines. However, DNA binding of NF-${\kappa}B$ induced by TNF-$\alpha$ in electromobility shift assay was not inhibited by dexamethasone. Super shift assay with anti-p65 antibody demonstrated the existence of p65 in NF-${\kappa}B$ complex induced by $\alpha$ Western blot showed that $I{\kappa}B{\alpha}$ degradation induced by TNF-$\alpha$ was not affected by dexamethasone and $I{\kappa}B{\kappa}$ was not induced by dexamethasone, neither. To evaluate p65 specific transactivation, we adopted co-transfection study of Gal4-p65TA1 or TA2 fusion protein expression system together with 5xGal4-luciferase vector. Co-transfection of GR with Gal4-p65TA1 or TA2 repressed luciferase activity profoundly to the level of 10-20% of p65TA1- or TA2-induced transcriptional activity. And this transrepressional effect was abolished by co-transfection of CBP of SRC-1 expression vectors. These results suggest that GR-mediated transrepression of NF-${\kappa}B$ in lung epithelial cells is through competing for binding to limiting amounts of transcriptional coactivators, CBP or SRC-1.

  • PDF

Effect of FTY-720 on Pulmonary Fibrosis in Mice via the TGF-β1 Signaling Pathway and Autophagy

  • Yuying Jin;Weidong Liu;Ge Gao;Yilan Song;Hanye Liu;Liangchang Li;Jiaxu Zhou;Guanghai Yan;Hong Cui
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.434-445
    • /
    • 2023
  • We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-β1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1β, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-β1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.

Proteomic Analysis of Protein Changes in Human Lung Cancer Epithelial Cells Following Streptococcus pneumoniae Infection (Streptococcus pneumonia 감염으로 변화한 사람 폐 상피세포 단백질의 프로테오믹 분석)

  • Lee, Yun Yeong;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1050-1056
    • /
    • 2013
  • Streptococcus pneumoniae is the leading cause of community-acquired pneumonia throughout the world. The bacteria invade through lung tissue and cause sepsis, shock, and serious sequelae, including rheumatic fever and acute glomerulonephritis. However, the molecular mechanism associated with pneumonia's penetration of lung tissue and invasion of the blood stream are still unclear. We attempted to investigate the host cell response at protein levels to S. pneumoniae D39 invasion using human lung cancer epithelial cells, A549. Streptococcus pneumoniae D39 began to change the morphology of A549 cells to become round with filopodia at 2 hours post-infection. A549 cell proteins obtained at each infection time point were separated by SDS-PAGE and analyzed using MALDI-TOF. We identified several endoplasmic reticulum (ER) resident proteins such as Grp94 and Grp78 and mitochondrial proteins such as ATP synthase and Hsp60 that increased after S. pneumoniae D39 infection. Cytosolic Hsc70 and Hsp90 were, however, identified to decrease. These proteins were also confirmed by Western blot analysis. The identified ER resident proteins were known to be induced during ER stress signaling. These/ data, therefore, suggest that S. pneumoniae D39 infection may induce ER stress.

Fine Needle Aspiration Cytology of Atypical Carcinoid Tumor of the Lung - 2 Cases Report - (폐의 비정형 유암종의 세침흡인 세포학적 소견 - 2예 보고 -)

  • Lee, Youn-Soo;Park, Gyeong-Sin;Choi, Young-Jin;Kang, Seok-Jin;Kim, Byung-Kee;Shim, Sang-In
    • The Korean Journal of Cytopathology
    • /
    • v.8 no.1
    • /
    • pp.76-82
    • /
    • 1997
  • Two cases of pulmonary atypical carcinoid tumor were diagnosed by fine needle aspiration cytology. Although the cytologic features of atypical carcinoid tumor have been relatively well described, it is easy to confuse atypical carcinoid tumor with typical carcinoid tumor, small cell carcinoma and adenocarcinoma of the lung. Atypical carcinoid tumor has been recognized as a distinct variant of pulmonary neuroendocrine carcinoma, with characteristic histopathologic and clinical features that separate it from both carcinoid and small cell carelnoma. The distinction of atypical carcinoid tumor from small cell carcinoma has important prognostic and therapeutic implications. The cytologic characteristics of atypical carcinoid tumor included polygonal to fusiform cells with a variable amount of lacy cytoplasm, oval nuclei with coarsely dispersed chromatin and frequent nucleoli, and mild pleomorphism. The malignant cells were arranged either in acinus-like clusterg or in epithelial sheets.

  • PDF

Recombinant Human HAPLN1 Mitigates Pulmonary Emphysema by Increasing TGF-β Receptor I and Sirtuins Levels in Human Alveolar Epithelial Cells

  • Yongwei Piao;So Yoon Yun;Zhicheng Fu;Ji Min Jang;Moon Jung Back;Ha Hyung Kim;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.558-572
    • /
    • 2023
  • Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death worldwide by 2030. One of its components, emphysema, has been defined as a lung disease that irreversibly damages the lungs' alveoli. Treatment is currently unavailable for emphysema symptoms and complete cure of the disease. Hyaluronan (HA) and proteoglycan link protein 1 (HAPLN1), an HA-binding protein linking HA in the extracellular matrix to stabilize the proteoglycan structure, forms a bulky hydrogel-like aggregate. Studies on the biological role of the full-length HAPLN1, a simple structure-stabilizing protein, are limited. Here, we demonstrated for the first time that treating human alveolar epithelial type 2 cells with recombinant human HAPLN1 (rhHAPLN1) increased TGF-β receptor 1 (TGF-β RI) protein levels, but not TGF-β RII, in a CD44-dependent manner with concurrent enhancement of the phosphorylated Smad3 (p-Smad3), but not p-Smad2, upon TGF-β1 stimulation. Furthermore, rhHAPLN1 significantly increased sirtuins levels (i.e., SIRT1/2/6) without TGF-β1 and inhibited acetylated p300 levels that were increased by TGF-β1. rhHAPLN1 is crucial in regulating cellular senescence, including p53, p21, and p16, and inflammation markers such as p-NF-κB and Nrf2. Both senile emphysema mouse model induced via intraperitoneal rhHAPLN1 injections and porcine pancreatic elastase (PPE)-induced COPD mouse model generated via rhHAPLN1-containing aerosols inhalations showed a significantly potent efficacy in reducing alveolar spaces enlargement. Preclinical trials are underway to investigate the effects of inhaled rhHAPLN1-containing aerosols on several COPD animal models.

Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts

  • Lee, Dong-Woon;Kim, Jae-Gu;Kim, Meyoung-Kon;Ansari, Sahar;Moshaverinia, Alireza;Choi, Seong-Ho;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • PURPOSE. The objective of this study was to conduct an in vitro comparative evaluation of polished and laser-dimpled titanium (Ti) surfaces to determine whether either surface has an advantage in promoting the attachment of epithelial-like cells and fibroblast to Ti. MATERIALS AND METHODS. Forty-eight coin-shaped samples of commercially pure, grade 4 Ti plates were used in this study. These discs were cleaned to a surface roughness (Ra: roughness centerline average) of 180 nm by polishing and were divided into three groups: SM (n=16) had no dimples and served as the control, SM15 (n=16) had $5-{\mu}m$ dimples at $10-{\mu}m$ intervals, and SM30 (n=16) had $5-{\mu}m$ dimples at $25-{\mu}m$ intervals in a $2{\times}4mm^2$ area at the center of the disc. Human gingival squamous cell carcinoma cells (YD-38) and human lung fibroblasts (MRC-5) were cultured and used in cell proliferation assays, adhesion assays, immunofluorescent staining of adhesion proteins, and morphological analysis by SEM. The data were analyzed statistically to determine the significance of differences. RESULTS. The adhesion strength of epithelial cells was higher on Ti surfaces with $5-{\mu}m$ laser dimples than on polished Ti surfaces, while the adhesion of fibroblasts was not significantly changed by laser treatment of implant surfaces. However, epithelial cells and fibroblasts around the laser dimples appeared larger and showed increased expression of adhesion proteins. CONCLUSION. These findings demonstrate that laser dimpling may contribute to improving the peri-implant soft tissue barrier. This study provided helpful information for developing the transmucosal surface of the abutment.

The Morphologic Changes by Immunosuppression after Heterotopic Transplantation of the Murine Cryopreserved Trachea: An Animal Model for Obliterative Bronchiolitis (이소 이식된 쥐 기관의 면역억제 및 초냉동 보관에 의한 형태학적 변화: 폐색성 모세기관지염의 연구를 위한 동물 실험 모델)

  • 이창하;성숙환;오미혜
    • Journal of Chest Surgery
    • /
    • v.32 no.3
    • /
    • pp.215-223
    • /
    • 1999
  • Background: The replacement of the narrowed long-segment trachea with various prosthetic materials or tissue grafts remains a difficult and unsolved surgical problem. Homologous cryopreserved tracheal transplantation has been considered to treat the irreversibly-damaged organs, such as in the lung or heart transplantation and also to overcome the limited supply of donor organs. We examined the morphological changes and the immunosuppressive effects of the cryopreserved trachea after the heterotopic transplantation in the rats. Material and Method: Sixty tracheal segments harvested from 30 donor Wistar rats were heterotopically implanted into the peritoneal cavity of 20 recipient Wistar rats and 40 Sprague Dawley rats. The 60 recipient rats were divided into 6 groups(10 rats/ group). In groups I, II, and III, 30 tracheal segments were implanted immediately after the harvesting and in groups IV, V, and VI, the segments were implanted 28 days after the cryopreservation. Groups I and IV were Wistar syngeneic controls. Groups II and V were Sprague Dawley recipients receiving no immunosuppression and Groups III and VI, were Sprague Dawley recipients receiving immunosuppressive agents. At 28 days all rats were sacrificed and the tracheal segments were evaluated grossly and histologically. Result: Immunosuppression of the tracheal segments had a significant influence on the changes of the tracheal lumen and tracheal epithelial cells, irrespective of the cryopreservation of the trachea(p<0.001). In groups III and VI receiving immunosuppressive agents, the tracheal lumen was patent and the normal epithelial cells were observed, however in the other groups not receiving the immunosuppressive agents, there were almost luminal obliteration by the proliferation of the fibrous tissues and a loss of the epithelial cells, the findings were similar to those in the case of obliterative bronchiolitis after a lung and a heart-lung transplantation. Conclusion: With the appropriate immunosuppressive agents, the lumen and the respiratory epithelium of the transplanted tracheal segment were well preserved, even after the cryopreservation of the tracheal segment, which shows the possibility of the long-term preservation and homologous transplantation of the trachea. But fibroproliferative obliteration of the tracheal lumen and the loss of the normal respiratory epithelial cells, characteristic findings of obliterative bronchiolitis, were observed in the groups without the immunosuppression. This experiment using the rat trachea may be useful in studying the pathogenesis, treatment, and prevention of obliterative bronchiolitis after a lung and a heart-lung transplantation.

  • PDF

Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells

  • Baek, Ae Rin;Lee, Ji Min;Seo, Hyun Jung;Park, Jong Sook;Lee, June Hyuk;Park, Sung Woo;Jang, An Soo;Kim, Do Jin;Koh, Eun Suk;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.143-152
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor ${\beta}1$ (TGF-${\beta}1$)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-${\beta}1$-induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods: The A549 alveolar epithelial cell line was treated with TGF-${\beta}1$ with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and ${\alpha}$-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-${\beta}1$ receptor type 1 ($T{\beta}RI$) and type 2 ($T{\beta}RII$) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results: TGF-${\beta}1$-treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-${\beta}1$-induced change of the EMT phenotype. ApoA1 inhibited the TGF-${\beta}1$-induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-${\beta}1$-induced increase in $T{\beta}RI$ and $T{\beta}RII$ expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion: Our data demonstrate that ApoA1 inhibits TGF-${\beta}1$-induced EMT in experimental lung fibrosis.