• Title/Summary/Keyword: lunar topography

Search Result 9, Processing Time 0.021 seconds

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.

Basic Lunar Topography and Geology for Space Scientists (우주과학자에게 필요한 달의 지형과 지질)

  • Kim, Yong Ha;Choi, Sung Hi;Yu, Yongjae;Kim, Kyeong Ja
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.217-240
    • /
    • 2021
  • Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

Geographic Distribution Analysis of Lunar In-situ Resource and Topography to Construct Lunar Base (달 기지 건설을 위한 달 현지 자원 및 지형의 공간 분포 분석)

  • Hong, Sungchul;Kim, Young-Jae;Seo, Myungbae;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.669-676
    • /
    • 2018
  • As the Moon's scientific, technological, and economic value has increased, major space agencies around the world are leading lunar exploration projects by establishing a road map to develop lunar resources and to construct a lunar base. In addition, as the lunar base construction requires huge amounts of resources from the Earth, lunar in-situ construction technology is being developed to produce construction materials from local lunar resources. On the other hand, the characteristics of lunar topography and resources vary spatially due to the crustal and volcanic activities inside the Moon as well as the solar wind and meteorites from outside the Moon. Therefore, in this paper, the geospatial analysis of lunar resource distribution was conducted to suggest regional consideration factors to apply the lunar in situ construction technologies. In addition, the lunar topographic condition to select construction sites was suggested to ensure the safe landing of a lunar lander and the easy maneuvering of a rover. The lunar topographic and resource information mainly from lunar orbiters were limited to the lunar surface with a low spatial resolution. Rover-based lunar exploration in the near future is expected to provide valuable information to develop lunar in situ construction technology and select candidate sites for lunar base construction.

Preliminary Characterization of Secondary Illumination at Shackleton Crater Permanently Shadowed Region from ShadowCam Observations and Modeling

  • Prasun Mahanti;Mark Southwick Robinson;David Carl Humm;Robert Vernon Wagner;Nicholas Michael Estes;Jean-Pierre Williams
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.131-148
    • /
    • 2023
  • Lunar permanently shadowed regions (PSRs) never see direct sunlight and are illuminated only by secondary illumination - light reflected from nearby topography. The ShadowCam imaging experiment onboard the Korea Pathfinder Lunar Orbiter is acquiring images of these PSRs. We characterize and discuss the nature of secondary illumination for the Shackleton PSR from ShadowCam radiance-calibrated images. We also use modeling to understand the magnitude and direction of the secondary illumination. Results from our analysis highlight the non-homogeneous, dynamic, and complex nature of PSR secondary lighting. Knowledge of the direction of the secondary illumination is crucial for reli-able interpretation of contrasts observed in ShadowCam images. This preliminary analysis of the floor of Shackleton crater from images acquired over multiple secondary illumination conditions does not reveal indications of exposed surface ice, even though temperatures are constantly below 110K.

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model (달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용)

  • Kim, Taig Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.

Seasonal Changes of Water Properties and Current in the Northernmost Gulf of Aqaba, Red Sea

  • Manasrah, Riyad;Zibdah, Mohammad;Al-Ougaily, Firas;Yusuf, Najim;Al-Najjar, Tariq
    • Ocean Science Journal
    • /
    • v.42 no.2
    • /
    • pp.103-116
    • /
    • 2007
  • Seasonal changes of tide signal(s), temperature, salinity and current were studied during the years 2004-2005 in the northernmost Gulf of Aqaba, which is under developmental activities, to obtain scientific bases for best management and sustainability. Spectrum analysis revealed permanent signals of tide measurements during all seasons, which represented semidiurnal and diurnal barotropic tides. The other signal periods of 8.13, 6.10-6.32, 4.16 and 1.02-1.05 h were not detected in all seasons, which were related to shallow water compound and overtides of principle solar and lunar constituent and to seiches generated in the Red Sea and the Gulf of Aqaba. Spatial and temporal distribution of temperature, salinity and density showed significant differences between months in the coastal and offshore region and no significant differences among the coastal sites, between the surface and bottom waters and between coastal and offshore waters. Therefore, the temporal and spatial variation of water properties in the northernmost Gulf of Aqaba behave similarly compared to other parts. The coastal current below 12 m depth was weak $(3-6\;cms^{-1})$ and fluctuated from east-northeastward to west-southwestward (parallel to the shoreline), which may be related to the effect of bottom topography and/or current density due to differential cooling between eastern and western parts in the study area, and wind-induced upwelling and downwelling in the eastern and western side, respectively. The prevailing northerly winds and stratification conditions during summer were the main causes of the southward current at 6 and 12 m depths with average speed of 28 and $12cms^{-1}$ respectively.

A study on the deeds of Choi Bu and its filming significance (崔溥 《漂海錄》 行程與其拍攝意義研究)

  • Choi, Chang-Won
    • Industry Promotion Research
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2022
  • Cui Bu (1454~1504 BC), named Yuanyuan, named Jinnan. Served as the deputy manager of the Korean King Chosun Hongwenguan (fifth grade official). In 1487, on the way to Jeju Island to perform official duties, because his father died, he went home from the funeral on the third day of the first lunar month in 1488, but was unfortunately on the way. Encountered a storm, and drifting at sea for nearly half a month, he landed at the "Linhai County Boundary of Taizhou Prefecture, Zhejiang Province, Datang Kingdom" (now Sanmen County). Later, Cui Bu went to Hangzhou by land near Taizhou, where he landed, then via Hangzhou, took a boat along the Beijing-Hangzhou Grand Canal to Beijing, and from Beijing by land through Shanhaiguan, and returned to his country via the Yalu River. Cui Bu stayed in China for four and a half months, 136 days, and traveled nearly 9,000 miles. After returning to China, he wrote the book "Piaohailu" in Chinese. This diary-style book has a total of more than 50,000 characters, covering politics, military, economics, culture, transportation, and local customs in the early years of Hongzhi in the Ming Dynasty. The situation is an important document for studying China's Ming Dynasty coastal defense, political system, justice, canals, cities, topography, and folklore.

Discussion on the Necessity of the Study on the Principle of 'How to Mark an Era in Almanac Method of Tiāntǐlì(天體曆)' Formed until Han dynasty (한대(漢代) 이전에 형성된 천체력(天體曆) 기년(紀年) 원리 고찰의 필요성에 대한 소론(小論))

  • Seo, Jeong-Hwa
    • (The)Study of the Eastern Classic
    • /
    • no.72
    • /
    • pp.365-400
    • /
    • 2018
  • The signs of $G{\bar{a}}nzh{\bar{i}}$(干支: the sexagesimal calendar system) almanac, which marked each year, month, day and time with 60 ordinal number marks made by combining 10 $Ti{\bar{a}}ng{\bar{a}}ns$(天干: the decimal notation to mark date) and 12 $D{\grave{i}}zh{\bar{i}}s$(地支 : the duodecimal notation to mark date), were used not only as the sign of the factors affecting the occurrence of a disease and treatment in the area of traditional oriental medicine, but also as the indicator of prejudging fortunes in different areas of future prediction techniques.(for instance, astrology, the theory of divination based on topography, four pillars of destiny and etc.) While theories of many future predictive technologies with this $G{\bar{a}}nzh{\bar{i}}$(干支) almanac signs as the standard had been established in many ways by Han dynasty, it is difficult to find almanac discussion later on the fundamental theory of 'how it works like that'. As for the method to mark the era of $Ti{\bar{a}}nt{\check{i}}l{\grave{i}}$(天體曆: a calendar made with the sidereal period of Jupiter and the Sun), which determines the name of a year depending on where $Su{\grave{i}}x{\bar{i}}ng$(歲星: Jupiter) is among the '12 positions of zodiac', there are three main ways of $$Su{\grave{i}}x{\bar{i}}ng-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(歲星紀年法: the way to mark an era by the location of Jupiter on the celestial sphere), $$T{\grave{a}}isu{\grave{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$ (太歲紀年法: the way to mark an era by the location facing the location of Jupiter on the celestial sphere) and $$G{\bar{a}}nzh{\bar{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(干支紀年法: the way to mark an era with Ganzhi marks). Regarding $$G{\bar{a}}nzh{\bar{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(干支紀年法), which is actually the same way to mark an era as $$T{\grave{a}}isu{\grave{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(太歲紀年法) with the only difference in the name, there are more than three ways, and one of them has continued to be used in China, Korea and so on since Han dynasty. The name of year of $G{\bar{a}}nzh{\bar{i}}$(干支) this year, 2018, has become $W{\grave{u}}-X{\bar{u}}$(戊戌) just by 'accident'. Therefore, in this discussion, the need to realize this situation was emphasized in different areas of traditional techniques of future prediction in which distinct theories have been established with the $G{\bar{a}}nzh{\bar{i}}$(干支) mark of year, month, day and time. Because of the 1 sidereal period of Jupiter, which is a little bit shorter than 12 years, once about one thousand years, 'the location of Jupiter on the zodiac' and 'the name of a year of 12 $D{\grave{i}}zh{\bar{i}}s$(地支) marks' accord with each other just for about 85 years, and it has been verified that recent dozens of years are the very period. In addition, appropriate methods of observing the the twenty-eight lunar mansions were elucidated. As $G{\bar{a}}nzh{\bar{i}}$(干支) almanac is related to the theoretical foundation of traditional medical practice as well as various techniques of future prediction, in-depth study on the fundamental theory of ancient $Ti{\bar{a}}nt{\check{i}}l{\grave{i}}$(天體曆) cannot be neglected for the succession and development of traditional oriental study and culture, too.