• Title/Summary/Keyword: lunar exploration

Search Result 135, Processing Time 0.023 seconds

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

A survey study on navigation and attitude control technology for the development of Korean lunar probe (한국형 달탐사선 개발을 위한 탐사선의 자세제어 및 항법 기술에 관한 현황 연구)

  • Kwon, Soon-Kyu;Kim, Woo-Sung;Ko, Sang-Ho;Lee, Sang-Chul;Rew, Dong-Young;Ju, Gwang-Hyeok
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.6-16
    • /
    • 2010
  • After the first successful Apollo program, many countries around the world launched their own programs for exploring the moon. This paper surveys various navigation and attitude control systems of several past lunar exploration programs for the purpose of preparing a program for the first Korean lunar probe. For this first we investigate successful programs by introducing the sensors and actuators used for these programs, particularly focusing on those of Clementine and SMART-1 of USA and EU, respectively. Then based on the study, we suggest the necessary components of navigation and attitude control systems suitable for our lunar probe program.

  • PDF

Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

  • Lee, Eunji;Kim, Youngkwang;Kim, Minsik;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

Study on Net Assessment of Trustworthy Evidence in Teleoperation System for Interplanetary Transportation

  • Wen, Jinjie;Zhao, Zhengxu;Zhong, Qian
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1472-1488
    • /
    • 2019
  • Critical elements in the China's Lunar Exploration reside in that the lunar rover travels over the surrounding undetermined environment and it conducts scientific exploration under the ground control via teleoperation system. Such an interplanetary transportation mission teleoperation system belongs to the ground application system in deep space mission, which performs terrain reconstruction, visual positioning, path planning, and rover motion control by receiving telemetry data. It plays a vital role in the whole lunar exploration operation and its so-called trustworthy evidence must be assessed before and during its implementation. Taking ISO standards and China's national military standards as trustworthy evidence source, the net assessment model and net assessment method of teleoperation system are established in this paper. The multi-dimensional net assessment model covering the life cycle of software is defined by extracting the trustworthy evidences from trustworthy evidence source. The qualitative decisions are converted to quantitative weights through the net assessment method (NAM) combined with fuzzy analytic hierarchy process (FAHP) and entropy weight method (EWM) to determine the weight of the evidence elements in the net assessment model. The paper employs the teleoperation system for interplanetary transportation as a case study. The experimental result drawn shows the validity and rationality of net assessment model and method. In the final part of this paper, the untrustworthy elements of the teleoperation system are discovered and an improvement scheme is established upon the "net result". The work completed in this paper has been applied in the development of the teleoperation system of China's Chang'e-3 (CE-3) "Jade Rabbit-1" and Chang'e-4 (CE-4) "Jade Rabbit-2" rover successfully. Besides, it will be implemented in China's Chang'e-5 (CE-5) mission in 2019. What's more, it will be promoted in the Mars exploration mission in 2020. Therefore it is valuable to the development process improvement of aerospace information system.

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

The Effect of Solar Burst in Communications System for Lunar Exploration (달 탐사 통신 시스템에서 태양 폭발의 영향)

  • Kim, Sanggoo;Hong, Heejin;Oh, Janghoon;Yoon, Dongweon;Hyun, Kwangmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.309-316
    • /
    • 2013
  • Since the solar activity, one of the factors influencing on lunar communication systems, is to reach its maximum occurring at 11-year solar cycle in autumn 2013, the solar burst frequency and strength are expected to increase. The solar burst has an effect on earth magnetosphere and causes malfunction, loss of communication, and breakdown of various types of satellites and probes. These problems give rise to huge economic and physical loss. Therefore, we should analyze the effect of solar burst on lunar communications and minimize the expected loss. In this paper, we perform the analysis of the link model and link performance between a land station and a lunar orbiter under the solar burst for orbiter's survivability and stable communication channel operations.

Conceptual Design of a Launch Vehicle for Lunar Exploration by Combining Naro-1 and KSLV-II (나로호와 한국형발사체를 연계한 달탐사 발사체 개념설계)

  • Yang, Won-Seok;Kim, So-Yeon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.654-660
    • /
    • 2014
  • In this paper, a conceptual design of a launch vehicles is proposed by combining Naro-1 and KSLV-II. For trans-lunar injection (TLI) to lunar orbit at 300 km LEO, the target performance is defined same as that of KSLV-II, which delivers an object of 2.6 tons into 300 km LEO. The proposal launch vehicle concept of this study is combination of 1st stage of KSLV-I and 2-3rd stage of KSLV-II. Thus, it is possible to reduce the development time and also could expand the options for national launch vehicle capabilities with proven technologies.

A Study on Lunar Soil Simulant Pretreatment for Effective Simulation of Lunar Surface Environment (달 지상 환경의 효과적 모사를 위한 인공월면토 전처리에 관한 연구)

  • Chung, Taeil;Kim, Young-Jae;Ryu, Byung-Hyun;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • As interest in lunar exploration increases, studies on lunar surface environment simulation including a lunar soil simulant are being conducted. One of the problems when creating a vacuum environment with lunar soil is that it takes long time to reach high vacuum due to outgas from the soil. Most of the outgas is water, and the time to reach high vacuum can be significantly reduced by a pretreatment process that removes moisture adhering to the surface of the lunar soil before putting soil into a vacuum chamber. The existing soil drying methods were examined to determine how these methods were effective to remove moisture from the lunar simulant soil. Drying experiments of lunar soil samples were carried out using a dry oven, a microwave oven, direct heating method and a vacuum oven, and the results of the drying experiment were presented. Drying soil at 110℃ using a dry oven and drying soil by a microwave oven were not enough to remove moisture, and vacuum oven drying method and direct heating drying method at more than 200℃ were effective in water removal.

A Review of the Candidate Areas and Missions for Lunar Landing Sites based on NASA Workshop & Overseas Landing Missions (NASA 워크숍 및 해외 착륙임무에 기반한 달 착륙 후보 지역과 임무에 대한 고찰)

  • Lee, Joohee;Rew, Dong-Young
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.375-395
    • /
    • 2021
  • Korea plans to send a pathfinder lunar orbiter to the Moon for the first time in August 2022. And according to the 3rd Basic Plan for Space Development Promotion, the plan is to send a lunar lander to the Moon before 2030. The selection of the lunar landing area can be varied depending on the lunar lander's mission, therefore preliminary research on the lunar landing sites is essential for a successful lunar exploration mission design. This paper analyzed the characteristics of major regions among 14 proposed regions using NASA's MoonTrek based on the data on the candidate areas for the major moon landing proposed sites by the NASA workshop in 2018. And we looked into what kind of future moon landing missions are suitable for these areas. We also looked at the importance of lunar Antarctica area through the recent lunar landing areas of Moon landing countries and Artemis plan.

A Study on the 28 Lunar Mansions(Hsiu:宿) (28숙(宿)에 대한 고찰(考察) - 《내경(內經)》과 《유경(類經)》을 중심(中心)으로 -)

  • Park, Yung Hwan;Park, Kyoung Nam;Maeng, Woong Jae
    • The Journal of Korean Medical History
    • /
    • v.20 no.1
    • /
    • pp.165-205
    • /
    • 2007
  • This dissertation aims at studying how 'the 28 Lunar Mansions' was applied to the Oriental medicine(韓醫學) and was set up as one of the most important theories of Oriental medicine. This study especially examines how 'the 28 Lunar Mansions' has influenced Oriental medicine focusing on the exploration of "The Huang Di Nei Jing, the Inner Classic of the Yellow Emperor ${\ll}$黃帝內經${\gg}$" and "Lei Jing ${\ll}$類經${\gg}$". Through that examination, there came some findings as follow.

  • PDF