• Title/Summary/Keyword: lunar capture

Search Result 4, Processing Time 0.016 seconds

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

  • Song, Young-Joo;Choi, Su-Jin;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases' optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.