• Title/Summary/Keyword: luminescent diode, LED

Search Result 15, Processing Time 0.027 seconds

Synthesis and Luminescent Characteristics of (Sr,Ba)2Ga2SiO7:Eu2+ Green Phosphor for LEDs (LED용 (Sr,Ba)2Ga2SiO7:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Park, Jeong-Gyu;Lee, Seung-Jae;Yeon, Jeong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.137-140
    • /
    • 2006
  • In this report, Europium doped strontium barium gallium silicate ((Sr,Ba)2Ga2SiO7:Eu2+) phosphor has been synthesized by conventional solid-state method and investigated luminescent characteristic. Appropriate proportions of the raw materials were mixed in an agate mortar with acetone to obtain starting mixtures. Also, this phosphor was prepared by simple process under the reduction atmosphere (25% H2/75% N2). This phosphor can be applicated to the green phosphor for white LED because it has green emission band (513 nm), which emits efficiently under the 405nm excitation energy.

Luminescent Properties of Four-Band White Light Emitting Diodes (사파장 백색 발광 다이오드의 발광 특성)

  • Young-Duk Huh;Su-Mi Lim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.370-375
    • /
    • 2003
  • $BaMg_2Al_16O_27:Eu,\SrGa_2S_4:Eu$, and ZnCdS:Ag,Cl phosphors were chosen to produce blue, green, and red emissions, respectively, under excitation from a violet light emitting diode (LED). A four-band white LED was obtained by a combination of nonabsorbed violet emission from a violet LED and blue, green, and red emissions from $BaMg_2Al_16O_27:Eu,\SrGa_2S_4:Eu$, and ZnCdS:Ag,Cl phosphors. The luminescent properties of the four-band white LED were also discussed.

Discovery of a Yellow Light Emitting Novel Phosphor in Sr-Al-Si-O-N System Using PSO (PSO를 이용하여 탐색한 황색 발광을 하는 Sr-Al-Si-O-N 계 신규 LED용 형광체)

  • Park, Woon Bae
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.301-306
    • /
    • 2017
  • The discovery of new luminescent materials for use in light-emitting diodes(LEDs) has been of great interest, since LED-based solid state lighting applications are attracting a lot of attention in the energy saving and environmental fields. Recent research trends have centered on the discovery of new luminescent materials rather than on fine changes in well-known luminescent materials. In a sense, the novelty of our study beyond simple modification or improvement of existing phosphors. A good strategy for the discovery of new fluorescent materials is to introduce activators that are appropriate for conventional inorganic compounds, that have well-defined structures in the crystal structure database, but have not been considered as phosphor hosts. Another strategy is to discover new host compounds with structures that cannot be found in any existing databases. We have pursued these two strategies at the same time using composite search technology with particle swarm optimization(PSO). In this study, using PSO, we have tracked down a search space composed of Sr-Al-Si-O-N and have discovered a new phosphor structure with yellow luminescence; this material is a potential candidate for UV-LED applications.

A Study on the Visible Light of the Wireless Communication and Its Application (가시광 무선통신 시스템과 응용에 관한 연구)

  • Kang, Heau-Jo
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.425-430
    • /
    • 2007
  • Depends on the running dry of the radio resources for the next generation of wireless communication system the estimated possibilities of the visible light which used for the devices such as signal light, the electric display board, guide board and so on applied for the next generation wireless network is the topic to be explored in this paper. Since radiation efficiency utilization for the wireless network has its capacity to become a trend direction we will study also on its application as well as the technique standardization.

  • PDF

InP/ZnS Core/shell as Emitting Layer for Quantum Dot LED

  • Kwon, Byoung-Wook;Son, Dong-Ick;Lee, Bum-Hee;Park, Dong-Hee;Lim, Ki-Pil;Woo, Kyoung-Ja;Choi, Heon-Jin;Choi, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.451-451
    • /
    • 2012
  • Instead of a highly toxic CdSe and ZnScore-shell,InP/ZnSecore-shell quantum dots [1,2] were investigated as an active material for quantum dot light emitting diode (QD-LED). In this paper, aquantum dot light-emitting diode (QDLED), consisting of a InP/ZnS core-shell type materials, with the device structure of glass/indium-tin-oxide (ITO)/PEDOT:PSS/Poly-TPD/InP-ZnS core-shell quantum dot/Cesium carbonate(CsCO3)/Al was fabricated through a simple spin coating technique. The resulting InP/ZnS core-shell QDs, emitting near blue green wavelength, were more efficient than the above CdSe QDs, and their luminescent properties were comparable to those of CdSe QDs.Thebrightness ofInP/ZnS QDLED was maximumof 179cd/m2.

  • PDF

Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs (LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myeong;Park, Jeong-Gyu;Kim, Gyeong-Nam;Lee, Seung-Jae;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • Nowadays, LEDs has been applied to the luminescent devices of various fields because of the invention of high efficient blue chip. Recently, especially, the white LEDs composed of InGaN blue chips and a yellow phosphor (YAG:Ce3+) have been investigated extensively. With the exception of YAG:Ce3+ phosphor, however, there are no reports on yellow phosphor that has significant emission in the 450~470 nm excitation range and this LED system is the rather low color rendering index due to their using two wavelength. Hence, we have attempted to synthesize thiogallate phosphors that efficiently under the long wavelength excitation range in the present case. Among those phosphors, we have synthesized Sr2Ga2S5:Eu2+ phosphor by change the host material of SrGa2S4:Eu2+ which is well known phosphor and we investigated the luminescent properties. In order to obtain the harmlessness and simplification of the synthesis process, sulfide materials and mixture gas of 5 % H2/95 % N2 were used instead of the CS2 or H2S gas. The prepared phosphor shows the yellow color peaking at the 550 nm wavelength and it possible to emit efficiently under the broad excitation band in the range of 300~500 nm. And this phosphor shows high luminescent intensity more than 110 % in comparison with commercial YAG:Ce3+ phosphor and it can be applied for UV LED due to excitation property in UV region.

Synthesis and Luminescent Characteristics of BaGa2S4:Eu2+ Green Phosphor for Light Emitting Diode (LED용 BaGa2S4:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.761-765
    • /
    • 2006
  • [ $II-III_2-(S,Se)_4$ ] structured of phosphor has been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, the europium doped $BaGa_2S_4$ was prepared by solid-state method and had high potential application due to an emissive property of UV region. Also, the common sulfide phosphors were synthesized by using injurious $H_2S\;or\;CS_2$ gas. However, in this study $BaGa_2S_4:Eu^{2+}$ phosphor in addition to excess sulfur was prepared under at 5% $H_2/95%\;N_2$ reduction atmosphere. Thus, this process could be considered as large scale synthesis because of non-harmfulness and simplification. The photoluminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than that of commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

Automatic Power Switching Unit (비상 전원용 초소형 스위칭 모듈 관한 연구)

  • Kang, Ey-Goo;Ann, Byoung-Sup;Nam, Tae-Jin;Kim, Bum-June;Lee, Young-Hon;Chung, Hun-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.82-82
    • /
    • 2009
  • 현재 국내에는 많은 가구들이 전기를 사용하고 있다. 아파트, 주택에 들어가는 전기 시스템들이 많이 발전하였지만 뜻하지 않은 사고로 인해 정전이 되는 경우가 있다. 정전시에는 아파트 같은 경우는 비상등, 엘리베이터 등 최소한의 장치만이 작동하도록 되어있다. 그러므로 각 세대에는 전기가 들어가지 않는다. 우리나라 경우에는 태풍이나 여름 같은 경우에는 전기를 많이 사용하기 때문에 발전기가 과부화 걸리는 현상이 생기기도 한다. 장기간 정전시에 가장 문제가 되는 기기는 냉장고, 전등이 될 것이다. 냉장고 같은 경우는 음식들이 상하게 되고, 전등 같은 경우에는 밤에 활동하는데 지장을 주게 된다. 따라서 본 논문에서는 정전시에는 자동적으로 비상발전기의 전원을 사용하고, 상시에는 다시 한전의 전원을 사용하게 하는 초소형 자동 스위칭 전원 모듈을 설계 제작한 논문이다. 설계된 스위칭 모듈에 대해서 시뮬레이션한 결과 예상한대로 비상시에 자동적으로 스위칭되는 결과를 알 수 있었다.

  • PDF

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.