• Title/Summary/Keyword: luminescence identification

Search Result 28, Processing Time 0.036 seconds

Effect on Identification of Irradiated Wheat and Soybean by the Full-overlapped Gravitational Field Energy(FGFE) Treatment (중첩중력에너지가 방사선 조사된 밀과 대두의 판별특성에 미치는 영향)

  • Oh, Sang-Lyong;Ahn, Jae-Jun;Kwon, Joong-Ho;Kim, Hak-Je
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.294-301
    • /
    • 2011
  • The aim of this study was to investigate the changes in identification markers of irradiated foods after treatment of the full-overlapped gravitational field energy (FGFE). Wheat and soybean samples were irradiated at 0-5 kGy of Co-60 gamma energy, and analyzed for photostimulated and thermo luminescence characteristics (PSL and TL) and sprouting rate at 0 and 6th month after FGFE treatment. As a screening method for irradiated samples, PSL photon counts (PCs) for the non-irradiated samples appeared negative (<700 PCs), while irradiated samples gave positive (>5,000 PCs). But FGFE-treated irradiated samples appeared intermediate (700-5,000 PCs), showing decreased PCs during storage. The TL analysis on irradiated samples exhibited glow curve peaks in range of $150-200^{\circ}C$ and TL ratio ($TL_1/TL_2$) was also >0.1. Therefore, identification of irradiated samples was possible using thermoluminescence. But the glow curve range of FGFE-treated irradiated samples shifted from $150-200^{\circ}C$ to $180-230^{\circ}C$ and TL intensity was decreased 37-60% resulting from FGFE treatment. After 6 months of storage, all the samples showed a decrease in TL intensity, but identification was still possible. The sprouting rate of irradiated samples decreased by about 72%, whereas that of FGFE-treated irradiated samples showed by about 85%, as compared to non-irradiated samples. More detailed study is required to investigate sprouting phenomena for FGFE-treated samples.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Application of PSL and TL Detection Method by Irradiation doses on the Foods Approved to Irradiation in Korea (조사 선량에 따른 품목별 PSL과 TL 시험법 적용 가능성 검증)

  • Cho, Joon-Il;Lee, Ji-Ae;Chung, Hyung-Wook;Lee, Soon-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This research was conducted to know application of Photostimulated luminescence (PSL) and Thermoluminesce(TL) methods by irradiation dose for leaching tea, sauces and starch approved in Korea. Leaching tea, sauces and starch powder were treated with $^{60}Co$ gamma ray at dose 0~10 kGy for detection trial whether they are irradiated or not by measuring PSL and TL for whole samples. PSL values were less than threshold value 700 and were, negative for non-irradiated samples but more than 5,000 and were positive for irradiated ones. PSL results of leaching tea and sauces showed the correct identification for non-irradiated and irradiated samples, respectively except starch samples. To enhance the reliability of the TL result, the first glow curve (TL1) was compared with the second glove curve (TL2) obtained after a re-irradiation step at 1 kGy. The TL ratio ($TL_1/TL_2$) was in good agreement with the reported TL threshold for both the non-irradiated (< 0.1) and irradiated (> 0.1) samples. TL results of leaching tea, sauces, starch showed the correct identification for non-irradiated and irradiated samples, respectively. This study was performed to know application of PSL and TL methods for leaching tea, sauces and starch, and the methods were able to detect the irradiation products.

Detection Characteristics of PSL and TL Methods in Spices Irradiated with Different Radiation Sources (조사선원에 따른 향신료의 PSL과 TL 검지 특성)

  • Kim, Kyu-Heon;Kwak, Ji-Young;Kim, Jung-Ki;Hwang, Cho-Rong;Lee, Jae-Hwang;Park, Yong-Chjun;Kim, Jae-I;Jo, Tae-Yong;Lee, Hwa-Jung;Lee, Sang-Jae;Han, Sang-Bae
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • The detection characteristics of irradiated spices were investigated depending on radiation sources and doses by photostimulated luminescence (PSL) and Thermoluminescence (TL). 6 kinds of spices (turmeric, onion powder, red pepper, basil, parsley, black pepper) were irradiated at 0 to 10 kGy under ambient conditions by both a $^{60}Co$ gamma irradiator and an electron beam (EB) accelerator, respectively. The PSL analysis showed negative results for non-irradiated spices, while irradiated spices gave intermediate and positive value, which presented the limited potential of PSL technique. In TL measurement, TL glow curves on non-irradiated samples appeared at about $300^{\circ}C$ with low intensity. All irradiated samples were easily distinguishable through radiation-specific strong TL glow curves with maximum peak in range of $150{\sim}200^{\circ}C$. TL ratio ($TL_1/TL_2$) obtained by a re-irradiation step could verify the detection result of $TL_1$ glow curves, showing ratios lower than 0.1 in the non-irradiated sample and higher than 0.1 in irradiated ones. Therefore, in PSL measurement, the identification of irradiated spices showed more clear results in electron beam irradiated samples. TL analysis showed obvious difference between non-irradiated and irradiated samples in gamma ray and electron beam irradiated samples.

Biological Toxicity Assessment of Sediment at an Ocean Dumping Site in Korea (폐기물 배출해역 퇴적물의 생물학적 독성평가 연구)

  • Seok, Hyeong Ju;Kim, Young Ryun;Kim, Tae Won;Hwang, Choul-Hee;Son, Min Ho;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The effect of sediments in a waste dumping area on marine organisms was evaluated using sediment toxicity tests with a benthic amphipod (Monocorophium acherusicum) and bioluminescent bacterium (Vibrio fischeri) in accordance with the Korean Standard Method for Marine Wastes (KSMMW). Nine sites in the East Sea-Byeong, East Sea-Jeong, and Yellow Sea-Byeong areas were sampled from 2016 to 2019. The test results showed that the relative average survival rate (benthic amphipods) and relative luminescence inhibition rate (luminescent bacteria) were below 30%, which were judged to be "non-toxic." However, in the t-test, a total of 12 benthic amphipod samples (6, 1, 1, and 4 in 2016, 2017, 2018, and 2019, respectively) were significantly different (p<0.05) from the control samples. To identify the source of toxicity on benthic amphipods, a simple linear regression analysis was performed between the levels of eight heavy metals (Cr, As, Ni, Cd, Cu, Pb, Zn, and Hg) in sediments and the relative average survival rate. The results indicated that Cr had the highest contribution to the toxicity of benthic amphipods (p = 0.000, R2 = 0.355). In addition, Cr was detected at the highest concentration at the DB-85 station and exceeded the Marine Environment Standards every year. Although the sediments were determined as "not toxic" according to the ecotoxicity criteria of the KSMMW, the results of the statistical significance tests and toxicity identification evaluation indicated that the toxic effect was not acceptable. Therefore, revising the criteria for determining the toxic effect by deriving a reference value through quantitative risk assessment using species sensitivity distribution curves is necessary in the future.

Comparison of Anti-Oxidative Activities of Gamma-Irradiated Aralia continentalis Extracts for Long-Term Storage of Oriental Medicine (한약재 장기 보존을 위해 감마선 조사한 독활(Aralia continentalis) 추출물의 항산화 효과 비교)

  • Park, Hye-Jin;Hong, Eun-Jin;Hong, Shin-Hyub;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.46-55
    • /
    • 2017
  • In this study, extracts of gamma-irradiated Aralia continentalis for health and beauty food resources were examined on antioxidant activities and increasing extraction yield. In photostimulated luminescence analysis, non-irradiated (0 kGy) sample showed an intermediate result of 891.00 photon counts (PCs), whereas irradiated (5 and 10 kGy) samples showed positive results of 79,956.67 and 282,498.67 PCs, respectively. The thermoluminescence ratio of non-irradiated samples was 0.018, whereas the values of irradiated samples (5 and 10 kGy) were 0.395 and 0.464, respectively. Electron spin resonance (ESR) analysis as a physical technique for irradiation identification of Aralia continentalis showed a pair of peaks on a space of 6.0 mT in the symmetric ESR spectrums. For phenolics of gamma-irradiated Aralia continentalis, water extracts had the highest amounts of 7.61 mg/g at non-irradiated condition (0 kGy) while 50% ethanol extracts had the highest amounts of 6.86 mg/g at 10 kGy irradiation. 2,2-Diphenyl-1-picrylhydrazyl scavenging activity of water and 50% ethanol extracts from non-irradiated and irradiated Aralia continentalis were very high (94.99~100.00%). 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation inhibitory activity was over 95.00% at $200{\mu}g/mL$ phenolics. Antioxidant protection factor (PF) showed a very high level of activity (1.38~2.51 PF). Thiobarbituric acid reactive substance inhibitory activity was high (70% and 95%, respectively). Thus, treatment of gamma irradiation can be used as a method of storage for long-term preservation of Oriental medicine.

Biological Activities of Extracts from Gamma-irradiated Aralia elata Cortex (감마선 조사한 총목피(Aralia elata Cortex) 추출물의 생리활성)

  • Park, Hye-Jin;Lee, Eun-Ho;Kim, Myung-Uk;Lee, Seon-Ho;An, Dong-Hyun;An, Bong-Jeun;Kwon, Joong-Ho;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1236-1247
    • /
    • 2014
  • Gamma irradiated-treatment of natural medicinal plants can be used to improve extraction transference number and for qualitative improvement of color when applied to functional material exploration. This study investigated the biological activities of Aralia elata cortex extracts upon gamma irradiation. In addition, different physical techniques [photostimulated luminescence (PSL) and thermoluminescence (TL)] were used for irradiation identification of Aralia elata cortex. In PSL analysis, non-irradiated (0 kGy) sample showed a negative result of 400 photon counts (PCs), whereas irradiated (5, 10, and 30 kGy) samples showed positive results of 90,100.00, 312,614.33, and 321,661.67 PCs, respectively. In the TL method, growth curve showed very unusual behaviors around $200^{\circ}C$ upon natural-irradiation of the non-irradiated (0 kGy) sample and around $150{\sim}250^{\circ}C$ for the irradiated (5, 10, and 30 kGy) samples. The TL ratio was 0.1 in non-irradiated samples at 0.011, whereas the values of irradiated samples (5, 10, and 30 kGy) were 0.1 at 1.105, 1.009, and 2.206, respectively. For phenolics of gamma-irradiated Aralia elata cortex, water and 50% ethanol extracts had the highest amounts, $17.30{\pm}0.40mg/g$ and $18.87{\pm}0.46mg/g$ at 10 kGy irradiation, respectively. The inhibitory activities of angiotensin-converting enzyme and xanthin oxidase were higher in both irradiated water and 50% ethanol extracts than in non-irradiated ones. For pancreatin ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibitory activities, water and 50% ethanol extracts containing $200{\mu}g/mL$ of phenolics showed high inhibitory activities of 60~100% at all irradiation doses (0~30 kGy). This result confirmed that Aralia elata cortex extracts have greater anti-diabetic effects than acabose as a diabetic remedy. Gamma-irradiated Aralia elata cortex extracts are useful as a functional material with anti-diabetic effects. Thus, Aralia elata cortex extracts can be used as a functional material with various biological activities, and gamma-irradiation can be used to amplify biological activities in plants.

Effect of Gamma Irradiation for Hygienic Long-Term Storage on Biological Activity of Teucrium veronicoides (위생적인 장기 보존을 위한 감마선 조사가 곽향(Teucrium veronicoides)의 생리활성에 미치는 영향)

  • Park, Hye-Jin;Park, Ki-Tae;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.581-591
    • /
    • 2017
  • The purpose of this study was to examine the biological activities of gamma-irradiated Teucrium veronicoides. In photostimulated luminescence analysis, non-irradiated sample showed lower than 700 photon counts (PCs), whereas irradiated (5 and 10 kGy) samples showed higher than 700 PCs. The thermoluminescence ratio of non-irradiated samples was less than 0.1, whereas the values of irradiated samples were greater than 0.1. Electron spin resonance analysis was performed confirmed for irradiation identification. The total phenolic contents of hot-water and 50% ethanol extracts were higher than those values after irradiation at 10 kGy. Regarding 1,1-diphenyl-2-picrylhydrazyl radical inhibitory activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, antioxidant protection factor, thiobarbituric acid reactive substance inhibitory activity as antioxidant test and xanthine oxidase inhibitory activity, the effect of gamma irradiation had on significant effects. On the other hand, ${\alpha}-amylase$ inhibitory activity of 10 kGy-irradiated hot-water extract was 23.6% higher than that of the non-irradiated sample. Thus, gamma irradiation could be used for the long-term storage of Teucrium veronicoides.