• Title/Summary/Keyword: luminance performance

Search Result 295, Processing Time 0.024 seconds

Adaptive Enhancement of Low-light Video Images Algorithm Based on Visual Perception (시각 감지 기반의 저조도 영상 이미지 적응 보상 증진 알고리즘)

  • Li Yuan;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.51-60
    • /
    • 2024
  • Aiming at the problem of low contrast and difficult to recognize video images in low-light environment, we propose an adaptive contrast compensation enhancement algorithm based on human visual perception. First of all, the video image characteristic factors in low-light environment are extracted: AL (average luminance), ABWF (average bandwidth factor), and the mathematical model of human visual CRC(contrast resolution compensation) is established according to the difference of the original image's grayscale/chromaticity level, and the proportion of the three primary colors of the true color is compensated by the integral, respectively. Then, when the degree of compensation is lower than the bright vision precisely distinguishable difference, the compensation threshold is set to linearly compensate the bright vision to the full bandwidth. Finally, the automatic optimization model of the compensation ratio coefficient is established by combining the subjective image quality evaluation and the image characteristic factor. The experimental test results show that the video image adaptive enhancement algorithm has good enhancement effect, good real-time performance, can effectively mine the dark vision information, and can be widely used in different scenes.

Improved Performance of All-Solution-Processed Inverted InP Quantum Dot Light-Emitting Diodes Using Electron Blocking Layer (전자차단층 도입을 통한 전체 용액공정 기반의 역구조 InP 양자점 발광다이오드의 성능 향상)

  • Heejae Roh;Kyoungeun Lee;Yeyun Bae;Jaeyeop Lee;Jeongkyun Roh
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2024
  • Quantum dot light-emitting diodes (QD-LEDs) are emerging as next-generation displays owing to their high color purity, wide color gamut, and solution processability. Enhancing the efficiency of QD-LEDs involves preventing non-radiative recombination mechanisms, such as Auger and interfacial recombination. Generally, ZnO serves as the electron transport layer, which is known for its higher mobility compared to that of organic semiconductors and can lead to excessive electron injection. Some of the injected electrons pass through the quantum dot emissive layer and undergo non-radiative recombination near or within the organic hole transport layer (HTL), resulting in HTL degradation. Therefore, the implementation of electron blocking layers (EBLs) is essential; however, studies on all-solution-processed inverted InP QD-LEDs are limited. In this study, poly(9-vinylcarbazole) (PVK) is introduced as an EBL to mitigate HTL degradation and enhance the emission efficiency of inverted InP QD-LEDs. Using a single-carrier device, PVK was confirmed to effectively inhibit electron overflow into the HTL, even at extremely low thicknesses. The optimization of the PVK thickness also ensured minimal disruption of the hole-injection properties. Consequently, a 1.5-fold increase in the maximum luminance was achieved in the all-solution-processed inverted InP QD-LEDs with the EBL.

Introduction and Research Trends on Micro LED Technology (마이크로 LED 기술 소개 및 연구 동향)

  • Moojin Kim
    • Advanced Industrial SCIence
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Currently, micro LEDs (Light Emitting Diode) are attracting attention in the lighting field along with next-generation displays and have advantages such as high luminance, operating speed, energy efficiency, and long-term driving. It is predicted to bring new innovations in smartphones, televisions, and wearable electronic devices. These micro displays are self-luminous displays that emit light by themselves by being implemented as pixels composed of micrometer-sized LED devices. The main manufacturing processes can be divided into crystal growth, patterning and etching, chip separation and transfer, bonding and wiring, panel assembly and encapsulation, inspection, and quality management. Recently, this technology has developed at a rapid pace, and companies are expanding their investments in these fields. According to recent market research results, the micro LED display market is expected to continue to grow, and the main development direction of development can be summarized as manufacturing process improvement, material innovation, and driving technology development. It is believed that commercialization will accelerate through these studies and lead to innovation in the display industry with high performance and various application possibilities.

Real-Time Video Quality Assessment of Video Communication Systems (비디오 통신 시스템의 실시간 비디오 품질 측정 방법)

  • Kim, Byoung-Yong;Lee, Seon-Oh;Jung, Kwang-Su;Sim, Dong-Gyu;Lee, Soo-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.75-88
    • /
    • 2009
  • This paper presents a video quality assessment method based on quality degradation factors of real-time multimedia streaming services. The video quality degradation is caused by video source compression and network states. In this paper, we propose a blocky metric on an image domain to measure quality degradation by video compression. In this paper, the proposed boundary strength index for the blocky metric is defined by ratio of the variation of two pixel values adjacent to $8{\times}8$ block boundary and the average variation at several pixels adjacent to the two boundary pixels. On the other hand, unnatural image movement caused by network performance deterioration such as jitter and delay factors can be observed. In this paper, a temporal-Jerkiness measurement method is proposed by computing statistics of luminance differences between consecutive frames and play-time intervals between frames. The proposed final Perceptual Video Quality Metric (PVQM) is proposed by consolidating both blocking strength and temporal-jerkiness. To evaluate performance of the proposed algorithm, the accuracy of the proposed algorithm is compared with Difference of Mean Opinion Score (DMOS) based on human visual system.

No-Reference Visibility Prediction Model of Foggy Images Using Perceptual Fog-Aware Statistical Features (시지각적 통계 특성을 활용한 안개 영상의 가시성 예측 모델)

  • Choi, Lark Kwon;You, Jaehee;Bovik, Alan C.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.131-143
    • /
    • 2014
  • We propose a no-reference perceptual fog density and visibility prediction model in a single foggy scene based on natural scene statistics (NSS) and perceptual "fog aware" statistical features. Unlike previous studies, the proposed model predicts fog density without multiple foggy images, without salient objects in a scene including lane markings or traffic signs, without supplementary geographical information using an onboard camera, and without training on human-rated judgments. The proposed fog density and visibility predictor makes use of only measurable deviations from statistical regularities observed in natural foggy and fog-free images. Perceptual "fog aware" statistical features are derived from a corpus of natural foggy and fog-free images by using a spatial NSS model and observed fog characteristics including low contrast, faint color, and shifted luminance. The proposed model not only predicts perceptual fog density for the entire image but also provides local fog density for each patch size. To evaluate the performance of the proposed model against human judgments regarding fog visibility, we executed a human subjective study using a variety of 100 foggy images. Results show that the predicted fog density of the model correlates well with human judgments. The proposed model is a new fog density assessment work based on human visual perceptions. We hope that the proposed model will provide fertile ground for future research not only to enhance the visibility of foggy scenes but also to accurately evaluate the performance of defog algorithms.

Development of OSL Dosimetry Reader (선량 판독용 OSL 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Design and performance test results of a newly developed optically stimulated luminescence (OSL) measurement system are presented in this paper. Generally, different types of optical filters are used in OSL reader system to minimize the interference of the stimulation light in the OSL signal. For optically stimulation of $Al_2O_3:C$, we have arrived at an optimal combination of the filters, i.e., GG420 filter for filtering the stimulating light source, and a combined UG11 and BG39 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optically stimulation. By using various control boards, the OSL reader device was successfully interfaced with a personal computer. A software was developed to deliver required commands to operate the OSL reader by using the LabView program (National Instruments, Inc.). In order to evaluate the reliability and the reproducibility of newly designed-OSL reader. Performance testing of the OSL reader was carried out for OSL efficiency, OSL decay curve and signal to noise ratio of the standard $Al_2O_3:C$ OSL material. It was found to be comparable with that of commercial Riso reader system.

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System (열자극발광 및 광자극발광 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Edge Enhanced Error Diffusion Halftoning Method Using Local Activity Measure (공간활성도를 이용한 에지 강조 오차확산법)

  • Kwak Nae-Joung;Ahn Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.313-321
    • /
    • 2005
  • Digital halftoning is a process to produce a binary image so that the original image and its binary counterpart appear similar when observed from a distance. Among digital halftoning methods, error diffusion is a procedure for generating high quality bilevel images from continuous-tone images but blurs the edge information in the bilevel images. To solve this problem, we propose the improved error diffusion using local spatial information of the original images. Based on the fact that the human vision perceives not a pixel but local mean of input image, we compute edge enhancement information(EEI) by appling the ratio of a pixel and its adjacent pixels to local mean. The weights applied to local means is computed using the ratio of local activity measure(LAM) to the difference between input pixels of 3$\times$3 blocks and theirs mean. LAM is the measure of luminance changes in local regions and is obtained by adding the square of the difference between input pixels of 3$\times$3 blocks and theirs mean. We add the value to a input pixel of quantizer to enhance edge. The performance of the proposed method is compared with conventional methods by measuring the edge correlation. The halftone images by using the proposed method show better quality due to the enhanced edge. And the detailed edge is preserved in the halftone images by using the proposed method. Also the proposed method improves the quality of halftone images because unpleasant patterns for human visual system are reduced.

  • PDF

Development of Image Quality Enhancement of a Digital Camera with the Application of Exposure To The Right Exposure Method (ETTR 노출 방법을 활용한 디지털 카메라의 화질 향상)

  • Park, Hyung-Ju;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.95-103
    • /
    • 2010
  • Raw files record luminance values corresponds to each pixel of a digital camera sensor. In digital imaging, controlling exposure to capture the first highlight stop is important on linear-distribution of raw file characteristic. This study sought to verify the efficiency of ETTR method and found the optimum over-exposure amount to maintain the first highlight stop to be the largest number of levels. This was achieved by over-exposing a scene with a raw file and converting it to under-exposure in a raw file converting software. Our paper verified the efficiency of ETTR by controlling the exposure range and ISOs. Throughout the results, if exposure increases gradually 6 steps, dynamic range is also increased. And it shows that the optimized exposure value is around + $1\frac{2}{3}$ stop over compared to the normal exposure with the high ISOs simultaneously. We compared visual noise value at $1\frac{2}{3}$ stop to the normal exposure visual noise. Based on the normal exposure's visual noise, we can confirm that visual noise decrement is increased by increasing ISOs. In this experimental result, we confirm that overexposure about + $1\frac{2}{3}$ stop is the optimum value to make the widest dynamic range and lower visual noise in high ISOs. Based on the study results, we can provide the effective ETTR information to consumers and manufacturers. This method will contribute to the optimum image performance in maximizing dynamic range and minimizing noise in a digital imaging.