• Title/Summary/Keyword: lumber

Search Result 311, Processing Time 0.027 seconds

Development of a Wood Recovery Estimation Model for the Tree Conversion Processes of Larix kaempferi (낙엽송 제재에 따른 이용재적 산출 모델의 개발)

  • Kwon, Kibeom;Han, Hee;Seol, Ara;Chung, Hyejean;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.484-490
    • /
    • 2013
  • This study was conducted to develop a simulation model for estimating the amount of such products as round wood, dimension lumber and the residual wood biomass produced by processing the individual trees of Larix kaempferi. In the model, the stem volume is assessed using the taper equations of the species to estimate the stem forms. Then, the model simulates the conversion processes of logs to round wood or lumber and assesses the maximum amount of the wood products by the lumber dimensions or round wood size. Also the model provides information on the amount of residuals for kerf and slabs produced on the conversion processes for sawn timber or round wood. According to the results of an application of the model to a L. kaempferi process, the trees greater than 12 cm of DBH can be converted to logs for lumber or round wood production. For the trees, of which DBH is available for log conversion, the maximum amount of final products by dimensions were analyzed. In this analysis, production of the bigger dimension lumber was assumed to be preferred to that of the smaller or round wood. This model can be used for assesment of forest economic value through estimation of merchantable volume for the trees, and assessment of mill residues which has the potential to provide significant amount of feedstock for bioenergy production as well.

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF

Visual Log Grading and Evaluation of Lamina Yield for Manufacturing Structural Glued Laminated Timber of Pitch Pine (리기다소나무 원목형질 조사 및 구조용집성재 제조 수율 평가)

  • Shim, Sangro;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Pitch pine (Pinus rigida) has been planted in Korean forests for several decades, primarily for erosion control and use as a fuel supply. To enhance its value, and especially potential use as lamina for structural glued laminated timber (glulam), log quality and lumber yield of pitch pine were evaluated in this study. Trees from pure pitch pine stands with an average diameter at breast height of 32 cm were felled and bucked into 3.6m long 15 cm minimum butt-end diameter logs. Over 80% of the logs were classified to No.2 or No.3 visual grade group. Upon sawing total lumber yield was 55.2%, 39.9% for structural glulam lamina, 7.2% for louver, and 8.1% for miscellaneous use. The final lumber yield for manufacturing structural glulam, after cross-cutting to eliminate knots and finger jointing, was only 15.3%. To enhance this manufacturing yield requires that the rate of knot-included lumber used as lamina be raised. However arrangement of the knot-included lamina, whose mechanical properties need to be accurately evaluated, must be optimized to minimize any reduction to the structural glulam strength. The log quality and lumber yield of pitch pine evaluated in this study are expected to facilitate proper planning for wood product manufacture in the Korean lumbering and glulam industrial field, which has not previously dealt with this species.

Physical and Mechanical Properties and Fire-endurance Characteristics of Recycled Particleboards

  • Suh, Jin-Suk;Han, Tae-Hyung;Park, Joo-Saeng;Park, Jong-Young
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.475-486
    • /
    • 2008
  • In this study, fire-retardant chemicals were melt with mixed composition ratios of dibasic ammonium phosphate and each half of boric acid and borax in hot water, in which hammer-milled chips were immersed to increase swelling of waste particleboards. Also, fire-retardant treated particles from sawn lumber chip and recycled particleboard chip were composed in ratio of 70:30 in core layer to improve boards' properties. Retention ratio of fire-retardant chemicals for the particles for face layer was high due to high specific surface area, and that of sawn lumber chips was somewhat higher than that of recycled particleboard chips. The mixture of particles from sawn lumber chips and recycled PB of 70:30 in weight ratio exceeded bending strength of 100 $kgf/cm^2$. It seemed that the relatively greater portions of dibasic ammonium phosphate affected adversely to dimensional stability, however fire-retardants treatment resulted in distinct effect lowering formaldehyde emission such as $E_0$ type(0.5mg/$\ell$ or less) in KS F 3104. In fire-retardancy, the recycled boards with a mixed ratio of dibasic ammonium phosphate to boric acid borax(50:50 mixture) of 70% to 30% in weight satisfied fire-retardancy 3rd grade in KS F 2271, and also this composition from cone calorimeter test met same standard grade figuring total heat release of 4.6MJ/$m^2$.

  • PDF

Analysis of the Influences on Domestic Wood Market by Prohibiting Illegal Wood Products Trade (불법목재의 교역 제한 조치가 국내 목재 시장에 미치는 영향 분석)

  • Kim, Dong-Hyun;Park, Hyun;Lee, Ho Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • This study conducted to estimate the influences of policy which prohibits illegal logging trade. Before analyzing of the economic effects for this policy, scenario methods were selected to inflect economic circumstance by implementing it. In order to do, the policy experiments were carried out using equilibrium displacement equation model. Results show that change ratio of log price was increased 0.066%~0.071%. Since the primary import country of log is New zealand which is high CPI score rather than Republic of Korea so that imported quantity of log was decreased thinly. Because imported log price is worked as a cost in the lumber market, if the imported log price was increased, supply of lumber has to be decreased. So that, not the change ratio of domestic lumber price was increased 0.885%~4.179% but supply of domestic lumber was increased 5.367% respectively along the goods features as a heterogeneity or homogeneity on the market.

Evaluation of Physical and Mechanical Properties of Non-certificated Laminated Veneer Lumber (LVL) Circulated in Domestic Lumber Market

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.429-436
    • /
    • 2011
  • The selected physical and mechanical properties of non-certificated LVL circulated in domestic lumber market were investigated and compared to relevant standards. The tested LVL passed the moisture content and the soaking delamination rate limit as per domestic (KS) and Japanese standard (JAS). The evaluated mechanical properties were flatwise/edgewise bending strength, modulus of elasticity (MOE), horizontal shear and compressive strength. The 30 mm-thick LVL showed significantly higher bending strength than that of the 25 mm-thick LVL. The modulus of elasticity (MOE) showed same tendency in the results of bending strength. The edgewise bending strength and MOE were higher than that of flatwise bending strength and MOE. The horizontal shear strength values were also showed similar results to bending strength values. The tested results were compared each other and each products were graded according to JAS 701 grade specification. The failure mode of LVL in bending test showed the similar failure mode of solidwood that failed in a simple tension manner (splintery tension). The glue line failure was severe in 25 mm-thick specimens due to concentration of shear stress in layer discontinuity containing small voids and starved glue lines. In horizontal shear strength test, failure mode of LVL showed the typical horizontal shear failure. Compressive specimens failed with fiber crushing in company with apparent delamination that splitted along the length of the specimens. From the results, the complete bonding between lamination and consistency in thin veneer layer were considered as a critical factor in the mechanical properties of LVL. Moreover, the standard test procedure and specification for non-certificated LVL should be required to check the performance of uncertificated materials.

Physical and Mechanical Properties of Glued Laminated Lumber of Pine (Pinus merkusii) and Jabon (Anthocephalus cadamba)

  • Lestari, Andi Sri Rahayu Diza;Hadi, Yusuf Sudo;Hermawan, Dede;Santoso, Adi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2018
  • The aim of this research was to determine the physical and mechanical properties of glued laminated lumber (glulam) made from jabon (Anthocephalus cadamba) and pine (Pinus merkusii). Three layers of lamina from each wood species were bonded using isocyanate adhesive with a glue spread of $280g{\cdot}m^{-2}$ and then pressed using cold press with a specific pressure of 1.47 MPa. Samples had dimensions of $3cm{\times}6cm{\times}100cm$ (thickness, width, and length, respectively). Glulam properties were tested based on Japanese Agricultural Standard (JAS) 234-2003. The results showed that the density of glulam was $0.36g{\cdot}m^{-3}$ for jabon and $0.73g{\cdot}m^{-3}$ for pine. The moisture content of all glulams fulfilled the JAS standard. The mechanical properties of pine glulam fulfilled the JAS standard in all tests, whereas jabon glulam fulfilled the standard in the modulus of rupture and shear tests.

Improvement of Drying Schedule for Domestic Red Pine Lumber (국산 소나무재 건조스케줄 개량에 관한 연구)

  • Lee, Hyoung-Woo;Kim, Kyung-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.25-30
    • /
    • 2005
  • This experiment was carried out for the improvement of drying schedules for 50 mm-thick Japanese red pine (Pinus densiflora Sieb. et Zucc.) lumber. Drying rates were analyzed comparatively after drying to 15% of final moisture content through the applications of conventional kiln drying schedule, time schedule, continuously rising temperature schedule, and drying rate schedule. As results drying rate of 50 mm-thick red pine lumber was 0.53%/hr with conventional kiln drying schedule, 0.9%/hr with time schedule, 2.29%/hr with continuously rising temperature schedule, and 1.52%/hr with drying rate schedule, respectively.

Analysis of Collector Efficiency and Proper Collector Size of External Collector Type Solar Lumber Dryer (외부집열판형(外部集熱板型) 태양열(太陽熱) 목재건조기(木材乾燥機)의 집열효율(集熱效率)과 적정(適正) 집열면적(集熱面積) 분석(分析))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • Experimental external collector type solar lumber dryer with $1.6m^2$ of collector area and $1.0m^3$ of maximum dryer capacity was designed and constructed to investigate the conditions inside and outside the dryer and collector. The efficiency of collector was calculated and numbers of drying-days and collector areas required to dry $0.2m^3$ and $1.0m^3$ of pine and oak at various an flow rate inside collector were estimated for eight cities in Korea. Average temperatures of collector-inlet and -outlet air and heat absorber were $52.5^{\circ}C$ $57.9^{\circ}C$, and $71.1^{\circ}C$. respectively at 4m/sec of an flow rate inside collector on sunny day in summer. Overall heat transfer coefficient of collector was 4.875W/$m^2^{\circ}C $ and collector efficiency was 52%. Estimated numbers of drying-days required to dry $0.2m^3$ of pine and oak from 80% to 15% moisture content at various air flow rate inside collector were 38 and 66 days. respectively. Areas of collector required to dry $1.0m^3$ of lumber at desired safe drying rate were estimated as $13.7m^2$ for pine and $16.0m^2$ for oak.

  • PDF