• 제목/요약/키워드: lower explosion limit(LEL)

검색결과 30건 처리시간 0.018초

에스테르화합물에 대한 표준끓는점과 인화점을 이용한 폭발하한계 추산 (Estimation of the Lower Explosion Limits Using the Normal Boiling Points and the Flash Points for the Ester Compounds)

  • 하동명
    • 한국안전학회지
    • /
    • 제22권5호
    • /
    • pp.84-89
    • /
    • 2007
  • 폭발하한계는 가연성물질의 화재 및 폭발 위험성을 결정하는데 사용되는 중요한 연소특성치의 하나이다. 본 연구에서 에스테르 화합물에 대한 폭발하한계는 액체 열역학이론을 근거로 표준끓는점과 인화점을 이용하여 예측하였다. 그 결과, 문헌값과 예측값의 A.A.P.E.(average absolute percent error)는 8.80vo1%이고, A.A.D.(average absolute deviation)는 0.18vo1% 그리고 상관계수는 0.965로써 문헌값과 예측값은 일치하였다. 제시된 방법론 사용에 의해 다른 가연성물질의 폭발하한계 예측이 가능하다.

벤젠의 위험성 평가를 위한 연소 특성치 고찰 (Investigation of Combustible Characteristics for Risk Assessment of Benzene)

  • 하동명
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.28-33
    • /
    • 2009
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosion limit, flash point, autoignition temperatures(AITs), minimum oxygen concentration(MOC), heat of combustion etc.. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of benzene, lower explosion limit(LEL) at $25^{\circ}C$, the temperature dependence of the explosion limits and flash point were investigated. And the AITs for benzene were experimented. By using the literatures data, the lower and upper explosion limits of benzene recommended 1.3 vol% and 8.0 vol%, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for benzene, and the experimental AIT of benzene was $583^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of benzene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

연소열을 이용한 유기할로겐화탄화수소류의 폭발한계의 예측 (Prediction of Explosion Limits of Organic Halogenated Hydrocarbons by Using Heat of Combustions)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제26권4호
    • /
    • pp.63-69
    • /
    • 2012
  • 폭발한계는 가연성물질의 폭발위험성을 결정하는데 중요한 특성치 가운데 하나이다. 본 연구에서는 연소열과 화학양론계수를 이용하여 유기할로겐화탄화수소의 폭발하한계와 상한계를 예측하였다. 제시된 예측식에 의한 폭발한계 값은 문헌값과 적은 오차범위에서 일치하였다. 제시된 방법론을 사용하여 다른 가연성 유기할로겐화탄화수소류의 폭발한계 예측이 가능할 것으로 판단된다.

연소열과 화학양론계수를 이용한 에테르류의 폭발한계의 예측 (Prediction of Explosion Limits of Ethers by Using Heats of Combustion and Stoichiometric Coefficients)

  • 하동명
    • 한국가스학회지
    • /
    • 제15권4호
    • /
    • pp.44-50
    • /
    • 2011
  • 폭발한계는 가연성물질의 화재 및 폭발위험성을 결정하는데 주요한 특성치 가운데 하나이다. 본 연구에서, 에테르류의 폭발하한계와 상한계에 대해 연소열과 화학양론계수를 이용하여 예측하였다. 제시된 예측식에 의한 예측값은 문헌값과 적은 오차범위에서 일치하였다. 제시된 방법론을 사용하여 다른 에테르류의 폭발한계 예측이 가능해졌다.

알루미늄 분체의 폭발위험성과 화염전파속도 (Explosion Hazards and Flame Velocity in Aluminum Powders)

  • 한우섭;이수희
    • 한국가스학회지
    • /
    • 제16권5호
    • /
    • pp.7-13
    • /
    • 2012
  • 알루미늄 분진폭발특성에 미치는 입경과 농도 변화에 따른 영향을 20 L 구형 분진폭발시험장치를 사용하여 실험적으로 조사하였다. 실험에 사용한 알루미늄 분진의 체적 평균 입경은 15.1 및 $34.8{\mu}m$이다. 실험결과, 평균 입경 $15.1{\mu}m$에서의 폭발하한농도(LEL)는 $40g/m^3$, 최대폭발압력($P_{max}$)은 9.8 bar, 폭발압력상승속도는 ($[dP/dt]_{max}$)는 1852 bar/s이었으며, 평균입경 $34.8{\mu}m$의 경우에는 LEL이 $70g/m^3$, $P_{max}$는 7.9 bar, $[dP/dt]_{max}$는 322 bar/s가 얻어졌다. Al분진의 폭발하한농도는 입경 증가에 따라 증가하는 경향이 관찰되었다. 또한 평균입경 $15.1{\mu}m$에서의 Al분진폭발압력으로부터의 화염전파속도의 계산값은 평균입경 $34.8{\mu}m$의 경우보다 5배의 크기를 나타내었다.

Hydroxy Propyl Methyl Cellulose 분진의 습도와 온도에 대한 영향성 연구 (A Study on The Effect of Humidity and Temperature of Hydroxy Propyl Methyl Cellulose Dust)

  • 임우섭;목연수;최재욱
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.65-69
    • /
    • 2004
  • This study was performed with Hartmann type dust explosion apparatus and Godbert-Greenwald furnace apparatus in order to research the effect of temperature and humidity affecting LEL, minimum ignition temperature of Hydroxy Propyl Methyl Cellulose. The experimental determinations in the range between $20^{\circ}C\;and\;60^{\circ}C$ of temperature was not affected $LEL(180g/m^3)$ but LEL showed $200g/m^3\;and\;250g/m^3\;at\;80^{|circ}C\;and\;100^{\circ}C$. As the change of humidity LEL was $180g/m^3\;for\;50\%,\;200g/m^3\;for\;60\%\;and\;250g/m^3\;for\;70\%$ but dust explosion didn't occur over $80\%$. The ignition temperature of HPMC dust clouds was increased as increasing of humidity. So, the minimum ignition temperatures at $50\%,\;60\%,\;70\%\;80\%$ of humidity was $363^{\circ}C,\;375^{\circ}C,\;397^{\circ}C,\;405^{\circ}C$.

테트랄린의 연소특성치 평가에 관한 연구 (A Study of the Evaluation of Combustion Properties of Tetralin)

  • 하동명
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

오토크레졸의 MSDS 연소특성치의 적정성 연구 (A Study on the Appropriateness of the Combustible Properties of MSDS for o-Cresol)

  • 하동명
    • 한국안전학회지
    • /
    • 제30권2호
    • /
    • pp.21-26
    • /
    • 2015
  • For the safe handling of o-cresol, this study was investigated the explosion limits of o-cresol in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of o-cresol by using closed-cup tester were experimented in $77^{\circ}C$ and $80^{\circ}C$. The lower flash points of o-cresol by using open cup tester were experimented in $86^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for o-cresol. The AIT of o-cresol was experimented as $495^{\circ}C$. The lower explosion limit(LEL) by the measured the lower flash point for o-cresol was calculated as 1.27 Vol%.

MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측 (The Measurement and Prediction of the Combustible Properties of of Benzyl-Alcohol for MSDS (Material Safety Data Sheet))

  • 하동명
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.190-194
    • /
    • 2017
  • 사업장에서 화재 및 폭발을 예방하기 위해서는 연소특성치로 인화점, 폭발한계, 최소자연발화온도 등을 들 수 있다. 화학공정의 안전을 위해서 취급 물질의 정확한 물질보건안전자료(MSDS)의 연소특성치 사용은 매우 중요하다. 화학산업에서 다양하게 사용되고 있는 벤질알코올의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. 벤질알코올의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. 벤질알코올의 Setaflash 밀폐식은 $90^{\circ}C$, Pensky-Martens 밀폐식에서는 $93^{\circ}C$ 그리고 Tag 개방식에서는 $97^{\circ}C$, Cleveland 개방식에서는 $100^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 측정된 벤질알코올의 최소자연발화온도는 $408^{\circ}C$로 측정되었다. Setaflash 밀폐식에 의해 측정된 벤질알코올의 하부인화점 $90^{\circ}C$의 폭발하한계는 1.17 vol%로 계산되었다. 본 연구에서는 Setaflash 밀폐식에 의해 측정된 벤질알코올의 하부인화점을 이용하여 폭발하한계의 예측이 가능하였다.

사이클로헥산올의 연소특성치의 측정 (The Measurement of Combustible Properties of Cyclohexanol)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제28권2호
    • /
    • pp.64-68
    • /
    • 2014
  • 사이클로헥산올의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀폐식 장치에 의한 사이클로헥산올의 하부인화점은$60^{\circ}C{\sim}64^{\circ}C$로 측정되었으며, 개방식에서는 $66^{\circ}C{\sim}68^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 사이클로헥산올의 최소자연발화온도는 $297^{\circ}C$로 측정되었다. 측정된 하부인화점과 상부인화점에 의한 폭발하한계는 0.95 Vol%, 상한계는 10.7 Vol%로 계산되었다.