• Title/Summary/Keyword: low-voltage circuit breaker

Search Result 86, Processing Time 0.028 seconds

Dead Operation Characteristics of Earth Leakage Circuit Breaker for 50[A] Against Surge Voltages (서지전압에 대한 50[A]용 누전차단기의 부동작 특성)

  • 이승칠;장석훈;이복희
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.5
    • /
    • pp.44-52
    • /
    • 1997
  • Electronic circuits with semiconductor and IC are very weak against the surge voltage and currents. The surge protective devices for electronic circuit and AC power lines are becoming more widely used. It is possible to give rise to the malfunction of the earth leakage circuit breaker(ELB) due to the operation of surge protective devices, and the interruption of AC power lines on account of the malfunction of the ELB brings about several disadvantages such as low operation efficiency and reliability of electronic and informational systems, economical loss, and etc. The aim of the present work is to investigate the dead operation characteristics of the ELB against the surge voltages. The impulse generator of 10[kV) in an 1.2/ 50[~) voltage waveform was fabricated. The dead operation characteristics of the ELB applied by surge voltages were measured under the conditions of KS C 4613 and the test circuit with a varistor. As a consequence, the peak value of the zero-phase sequence circuit of the ELB is increased as the surge voltage and stray capacitance increase. All of the ELBs used in this work were satisfied with the lightning impulse dead operation test condition defined in KS C 4613. However one specimen only did not bring about dead operation in the condition of the test circuit with a varistor. There is high possibility that a large portion of the ELB installed at the AC power lines with the surge protective devices bring about the dead operation.

  • PDF

A Study on the Operating Characteristics of the Aged ELCB according to the Overcurrent (노후화된 누전차단기의 과전류 동작 특성에 관한 연구)

  • Ye Jin Park;Sin Dong Kang;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This study analyzes the operational characteristics of 311 aged and non-aged residual current circuit breakers (RCCBs) in low-voltage consumer contexts. It investigates the influence of external temperature and harmonics based on the rated current multiples. To simulate temperature variations, a convectional oven was used around the circuit breakers. Additionally, the generation of harmonic reference signals and data measurement for overcurrent experiments were conducted using NI SCXI, myDAQ, and LabVIEW. An observation revealed that as the ambient temperature increased, the operating time of RCCBs decreased in the time delay region. This was attributed to the faster response or bending of the bimetal, which is the tripping element. However, aged RCCBs encountered challenges with tripping outside the protective curve. The operating time of the circuit breakers exhibited an acceleration influenced by the order and content of harmonic currents, potentially leading to malfunctions. Aged RCCBs demonstrated faster operating times than their non-aged counterparts. However, the difference in operating time varied based on the manufacturer's and operating environment of the RCCBs. Frequent malfunctions of RCCBs can result in power outages. In cases where these circuit breakers fail to operate, they can lead to secondary damages, including electrical fires and shocks. Consequently, it is imperative to consider the operating environment of RCCBs and provide appropriate replacement cycles to mitigate these risks.

Analytic Estimation of Interrupting capability on contact system in MCCB (배선용 차단기(MCCB) 차단성능 평가해석 기법)

  • Choi, Y.K.;Chong, J.K.;Kim, I.Y.;Park, I.H.;Hwang, G.C.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.628-632
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widly used in power distribution systems. In the paper, it was investigated how much Interrupting capability was improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), especially arc runner. Prior to the interrupting testing, it was necessary for the optimum design to analyze electromagnetic forces on the contact system, generated by current and flux density. This paper presents both our compuational analysis and test results on contact system in MCCB

  • PDF

A Study on the current harmonic testing for the low-voltage circuit-breaker with electronic over-current protection (전자식 저압 차단기의 전류 고조파 시험에 대한 고찰)

  • Kim, Myoung-Seok;Oh, Jun-Sick;Han, Gyu-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.154-156
    • /
    • 2002
  • 본 논문은 저압 차단기에 적용되는 IEC 60947-2 (Circuit breakers)와 전류고조파(Current harmonic) 내성시험 규격인 IEC 61000-3-2. IEC 61000-3-4에 대한 규격의 적용범위, 시험범위, 고조파에 대한 개념, 차단기의 고조파에 대한 영향 및 시험설비의 요구조건을 고찰하고, 16A 초과 전류 고조파 시험적용 방법과 시험결과를 고찰하고자 한다.

  • PDF

Short Circuit Tests of the Three-Phase DC Reactor Type Fault Current Limiter in Changing of Turns Ratio of Transformers (변압기 권선비의 변화에 따른 3상 DC 리액터형태 한류기의 단락실험)

  • Lee, Eung-Ro;Lee, Chan-Ju;Lee, Seung-Je;Go, Tae-Guk;Hyeon, Ok-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.267-272
    • /
    • 2002
  • This Paper deals with the short circuit tests of the three-Phase DC reactor type fault current limiter (FCL) in changing of turns ratio of transformers. The experiment of this paper is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. So, superconducting coil was made of Nb-Ti, low temperature superconductor, and the ratings of the power system of experimental circuit are 400V/7A class. A three-phase DC reactor type FCL consists of three transformers, six diodes, one superconducting coil and one cryostat. The important point of experimental analysis is transient period, the operating lagging time of circuit breaker. As the results of the experiment, the values are referred to the limitation rate about 77% and 90% when the turns ratio of transformer was 1:1 and 2:1 respectively.

Comparison of Characteristics of Steady State Low Current Arcs In Dual Flow Nozzles by Simplified Engineering Techniques (간단한 엔지니어링기법에 의한 이중유동형 노즐내의 저전류 정적 아크의 특성 비교)

  • Song, K.D.;Shin, Y.J.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.627-630
    • /
    • 1993
  • The arc characteristics have influences on the current interruption phenomena in the regimes of low current as well as high current. It is very important to understand the arc characteristics for the initial design of a circuit breaker. This article describes the theoretical analysis of the arc characteristics by means of arc energy integral method when convection dominated low current arcs are produced in the dual-nozzle air and $SF_6$ gas flows of a model interrupter. The arc radius, average electric field strength and arc voltage have been investigated at the current range of 60 to 230 A and at the upstream pressure of 0.6 MPa in both air and SF6 gas. The results have been compared to show the difference of both gases and the trends similar to those of other investigations.

  • PDF

Improvement of Short Circuit Performance in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers (460[V]/400[A]/85[kA] 배선용 차단기의 그리드 및 아크런너 변형을 통한 차단성능 향상)

  • Lee, Seung-Su;Jung, Eui-Hwan;Yoon, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1451_1452
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker depends on the shape, arrangement, and kinds of material of grids. This paper is focused on understanding the interrupting capability, more specifically of the grid and the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF

Interrupting Characteristics of 25.8kV Gas Circuit Breaker Using Thermal-Expansion Principle (열팽창분사원리를 이용한 25,8kV급 가스차단기의 차단특성)

  • Chang, K.C.;Shin, Y.J.;Park, K.P.;Jeong, J.K.;Kim, J.K.;Kim, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1603-1605
    • /
    • 1994
  • Recently, Gas Circuit Breakers are rapidly replacing Vacuum Circuit Breakers in the medium voltage switchgear. This is due to the improved performance of - GCB in interrupting capability, price, weight, size etc., while the countermeasure to suppress the switching surges of VCB has not been satisfactory. Intensive research works on the GCB have been conducted in the world widely since 1980. Nowadays it is well known that the thermal expansion type GCB can provide- better performance than puffer type in the distribution power system. KERI has conducted researches in the GCB rated at 25.8kV 25kA with Jinkwang Co. using the thermal expantion principle since 1993. In this paper, the calculated results of electric and magnetic fields for the model GCB are presented and analyzed. The effect of permanent magnet used to improve the interruption capabilty at the low current level is also investigated. The design parameters for the interrupter inspected through the short-circuit tests conducted at high power laboratory of KERI.

  • PDF

A Study of the Charging Current Effect on Underground Distribution Line in Electric Railway (전철 지중배전선로의 충전전류보상에 관한 연구)

  • Kim, Yang-Su;Jang, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.214-218
    • /
    • 2008
  • Because on the high-tension underground distribution line of an electric railway high voltage XLPE Cable two or three circuits between railway stations with a standard as receiving transformer facilities are established at a $30km{\sim}50km$ interval, reactive power in which the phase of a current is larger than that of a voltage is supplied when trains are not working, so when there are no loading or low loading as night. Due to the long-distance trend of the underground distribution system on an alternating current railway distribution line, the terminal voltage of a transformer is over the standard voltage, and after all, commercial cycle overvoltage is continued. To solve this problem, the shunt reactor is installed in middle of power distribution lines to maintain receiver voltage meted under the allowance regulation through control of the reactive power. Also, in case that the thickness of single cable is over $60mm^2$ and length of line is about over 30km, a circuit breaker is broken by shorting shunt ability of charging current in excess of shunt current(31.5A.rms). Therefore, this thesis presents installing the location of shunt reactor for quantitative analysis by using optimum algorism for compensation and control of the charging current.

  • PDF

A fault current analysis and parallel FCL scheme on superconducting new power system (초전도(신)전력계통 고장전류 분석 및 병렬한류시스템)

  • Yoon, Jae-Young;Lee, Seung-Ryul;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • This paper specifies the new power supply paradigm converting 154kV voltage level into 22.9kV class with equivalent capacity using superconducting rower facilities and analyze the fault current characteristics with and without HTS-FCL (High Temperature Superconducting-Fault Current Limiter). Superconducting new power system is the power system to which applies the 22.9kV HTS cable in parallel to HTS transformer and HTS-FCL with low-voltage and mass-capacity characteristics replacing 154kV conventional cable and transformer. The fault current of superconducting new power system will increase greatly because of the mass capacity and low impedance of HTS transformer and cable. This means that the HTS-FCL is necessary to reduce the fault current below the breaking current of circuit breaker. This paper analyze the fault current and suggests the parallel HTS-FCL scheme complementing the inherent problem of HTS-FCL, that is recovery after quenching is impossible within shorter than a few seconds.