• Title/Summary/Keyword: low-velocity impact

Search Result 322, Processing Time 0.027 seconds

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

Nonlinear Analysis of Composite Laminates Subjected to Low-Velocity Impact (복합적층판의 저속충격 거동에 대한 비선형 해석)

  • Choi, Ik-Hyeon;Hong, Chang-Sun;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.757-770
    • /
    • 1991
  • 본 연구에서는 조속충격을 받는 복합적층판의 거동에 대해 횡전단변형과 대처 짐효과를 동시에 고려하여 선형해석한 결과와의 차이를 비교, 검토하여 저속충격무제 의 해석에 있어서 비선형해석의 중요성을 보이는데 있다.그리고 충격체의 질량과 속도가 충격하중과 판의 거동, 그리고 동적 변형도등에 미치는 영향을 파악하여 복합 적층판의 외부 물체에 의한 저속충격문제를 이해 하고자 한다.

Evaluation on erosion resistance of STS304 by flyash (Flyash에 의한 STS304 재료의 내침식성 평가)

  • 박해웅;이의열
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.575-584
    • /
    • 2001
  • Erosion due to abrasive particles contained in gas streams from boilers has been emerged as a significant problem in the coal fired power plants. Particle erosion accounted for approximately 50% of boiler failures and especially flyash erosion was responsible for 20~30% of emergency boiler shutdowns. Particularly, because of the high ash loading and high velocity, most erosion occurs in the boiler tubes and economiser tube bank where the direction of the gas stream changes to $180^{\circ}$ .In this study, a high temperature particle erosion tester was used to evaluate erosion rate in a simulated environment. The erosion parameters such as erosion temperature, particle impact angle, particle velocity and various particle size were changed. Flyash is the combustion product of the pulverized coal, where size is ranging from 1 to $200\mu\textrm{m}$. Flyash composed of mainly SiO$_2$, $A1_2$$_O3$, and $Fe_2$$O_3$has dense spherical particles and irregular particles containing numerous pores and cavities. From the erosion tests at various conditions, the maximum erosion was experienced at impact angles of $30^{\circ}$ to $60^{\circ}$ In addition, erosion rate increased in proportional to velocity and temperature. And from the observation of the eroded surfaces, it was also concluded that 304 stainless steel was mainly eroded by extrusion-forging at high impact angle ($90^{\circ}$) and by microcutting mechanism at low impact angles ($30^{\circ}$ and $45^{\circ}$).

  • PDF

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Behaviors of Concrete Segmented Composites Using Polymer Mortar Under Static and Impact Loadings (폴리머 모르타르를 이용한 콘크리트 분절 복합체의 정하중 및 충격하중에서의 거동 평가)

  • Min, Kyung Hwan;Lee, Jin Young;Kim, Mi Hye;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.169-177
    • /
    • 2011
  • In this study, an impact resistance of concrete segmented composites adopted shell's structures which have the excellent impact resistance was assessed. In order to enhance the performances of concrete segmented composite, the bond strength of mortar between the concrete blocks should be improved. Hence, in this study polymer mortars were applied to increase the bond strength of mortar. From the results of bond tests, the 15% latex mortar was selected and static and low-velocity impact tests were carried out for the specimens applied the plain and latex mortar. The concrete segmented composites, of which the bond strength of mortar was enhanced, showed improved low-velocity impact resistances. A Nonlinear finite element analysis using the discrete crack model showed similar energy dissipating capacities to the impact test's results. Consequently, by improving the analysis models for segmented composites, the impact resistances for manifold variables can be predicted and assessed.

low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure (미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, we developed the direct numerical simulation(DNS) model considering the geometry of yams which consist of 3D orthogonal woven composite materials, and using this model, the dynamic behavior of under transverse low-velocity impact has been studied. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is presented and used in building structural plate model based on DNS. For comparison, DNS results are compared with those of the micromechanical approach which is based on the global equivalent material properties obtained by DNS static numerical tests. The effects with yarn geometrical irregularities which are difficult to consider in a macroscopic approach are also investigated by the DNS model. Finally, the multiscale model based on the DNS concepts is developed to enhance efficiency of analysis with real sized numerical specimen and macro/micro characteristics are presented.

A Study of Failure Mechanism for Inclined Impact of PELE (PELE의 경사진 충격에 따른 파괴 메커니즘에 대한 연구)

  • Jo, Jong-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.712-719
    • /
    • 2012
  • Penetrator with enhanced lateral effect(PELE) is a newconcept projectile, without dynamite and fuze. It consists of high-density jacket, closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE, by AUTODYN-3D code, the calculation models of projectile body and bullet target are established and the process of penetrating aluminum-2024 alloy target of PELE is simulated, and the scattering characteristics after penetrating aluminum-2024 alloy target of PELE are studied by different initial velocity. The explicit finite element analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. As expansion of filling, the fragments were obtained velocities and dispersed laterally and further more enhancing the damage area largely. The number and shape of the PELE fragments were different depend on impact velocity and incidence angle of filling which fragment generated during penetration and lateral dispersion process.