• Title/Summary/Keyword: low-temperature fermentation

Search Result 207, Processing Time 0.023 seconds

Effect of Fermentation Temperature on Quality of Doenjang (숙성온도가 된장의 품질에 미치는 영향)

  • Kim, Moon-Seok;Kim, Eun-Mi;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • There were four types of Doenjang fermentation as following conditions for investigation ; 1) low temperature fermentation at $13^{\circ}C$ for 180 days, 2) low temperature at $13^{\circ}C$ for 7 days to room temperature at $30^{\circ}C$ for 10 days, to low temperature at $13^{\circ}C$ for 163 days, and for 173 days, 3) low temperature at $13^{\circ}C$ 7 days to room temperature at $30^{\circ}C$, 4) room temperature at $30^{\circ}C$ for 180 days. There were no changes of moisture, NaCl and total nitrogen content during fermentation period of four types conditions, but pH and amino type nitrogen decreased in room temperature at $30^{\circ}C$ for 180 days. It required 3 times more fermentation period until same quantity of the amino type nitrogen. The low temperature fermentation sample was lower than room temperature fermentation sample in pH and amino type nitrogen. The yeast decreased in low temperature fermentation sample taken 15 to 30 days longer than room temperature sample. The yeast is increased up to 30 days, and decreased little by little. After 60 days, it remained a few without effectiveness on the Doenjang quality. The low temperature fermentation sample showed brighter than room temperature fermentation sample. Different fermentation condition affected Doenjnag quality, especially, low temperature fermentation sample showed bright color in Doenjnag. So low temperature fermentation must be expected as good method for getting high quality Doenjnag.

  • PDF

Large Scale of Ethanol Fermentation from Sweet Potato Cooked at Low and High Temperature (고구마의 저온증자 및 고온증자에 의한 공업적 규모의 주정발효)

  • 유병호;김운식;김성두;최명호;남기두;하미숙
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.233-237
    • /
    • 1986
  • Possibility of large scale ethanol fermentation from sweet potato were compared with low temperature and high temperature rooking. Productivity of sweet potato mash cooked at 9$0^{\circ}C$ for 120 minutes was higher than that mash cooked at 124$^{\circ}C$ for 60 minutes and also fermentation yield ai low temperature cooking was better than high temperature cooking. Low temperature cooking was successfully carried out on a large scale. In conclusion, low temperature cooking on large scale should be reduce energy consumption by approximate 30% compared with high temperature cooking.

  • PDF

Changes in Physicochemical and Microbiological Properties in Low-Temperature and Long-Term Fermented Kimchi during Fermentation (묵은 김치 제조과정에서의 이화학적 및 미생물학적 특성변화)

  • Yoo, Maeng-Ja;Kim, Hyung-Ryang;Chung, Hee-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.16 no.5
    • /
    • pp.431-441
    • /
    • 2001
  • To develop the low-temperature and long-term fermented kimchi, kimchi was prepared according to the recipe of a specific ratio of major and minor ingredients and adjusted its salinity to 3.7%. Prepared kimchi fermented at $15{\pm}1^{\circ}C$ for 24 hours and transferred and fermented in a refrigerator only used to make low-temperature and long-term fermented kimchi at $-1{\pm}1^{\circ}C$ for 30 weeks. During 30 weeks of fermentation the changes in physicochemical and microbiological properties of low-temperature and long-term fermented kimchi were studied. The initial pH of 6.47 decrease gradually and dropped to pH 4.0 after 14 weeks of fermentation, and then it maintained at same level. Acidity increased to 0.49% on 2 weeks of fermentation and kept at 0.47 $\sim$0.50% during 2 to 30 weeks fermentation. Salinity was slightly increased at early stage and started to decrease on 4 weeks of fermentation, and then it did not change. The change of reducing sugar content was closely related to the trend of pH change with a very high correlation coefficient(r =0.912). Lactic acid, citric acid, malic acid, succinic acid and acetic acid were major organic acids contained in low-temperature and long-term fermented kimchi. Vitamin C content decreased at initial stage of fermentation and then slightly increased up to the maximum of 22.3 mg% on 8weeks of fermentation. In color measurement, L value continued to increase during the fermentation and reached at the highest of 55.45 on 22 weeks of fermentation, and a and b values of 3.62 and 4.54 also increased to 31.26 and 37.32 on 30 weeks of fermentation, respectively. Total microbial count increased slowly from beginning and was the highest on 4 weeks of fermentation, and then began to decrease slowly. Count of Lactobacillus spp. was highest after 6weeks, but count of Lactobacillus spp. was highest on 2 weeks of fermentation, and then both showed a slow decrease. Yeast count wasn't increased until 4 weeks of fermentation and then increased rapidly to get the highest on 10 weeks of fermentation.

  • PDF

Taxonomic Variations of Bacterial and Fungal Communities depending on Fermentation Temperature in Traditional Korean Fermented Soybean Food, Doenjang

  • Eunhye Jo;Hyeyoung Lee;Younshil Song;Jaeho Cha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.863-870
    • /
    • 2024
  • Meju, a fermented soybean brick, is a key component in soybean foods like doenjang and ganjang, harboring a variety of microorganisms, including bacteria and fungi. These microorganisms significantly contribute to the nutritional and sensory characteristics of doenjang and ganjang. Amplicon-based next-generation sequencing was applied to investigate how the microbial communities of meju fermented at low and high temperatures differ and how this variation affects the microbial communities of doenjang, a subsequently fermented soybean food. Our metagenomic data showed distinct patterns depending on the fermentation temperature. The microbial abundance in the bacterial community was increased under both temperatures during the fermentation of meju and doenjang. Weissella was the most abundant genus before the fermentation of meju, however, it was replaced by Bacillus at high temperature-fermented meju and lactic acid bacteria such as Weissella and Latilactobacillus at low temperature-fermented meju. Leuconostoc, Logiolactobacillus, and Tetragenococcus gradually took over the dominant role during the fermentation process of doenjang, replacing the previous dominant microorganisms. Mucor was dominant in the fungal community before and after meju fermentation, whereas Debaryomyces was dominant under both temperatures during doenjang fermentation. The dominant fungal genus of doenjang was not affected regardless of the fermentation temperature of meju. Strong correlations were shown for specific bacteria and fungi linked to specific fermentation temperatures. This study helps our understanding of meju fermentation process at different fermentation temperatures and highlights different bacteria and fungi associated with specific fermentation periods which may influence the nutritional and organoleptic properties of the final fermented soybean foods doenjang.

Processing Conditions of Low-Salt Fermented Squid and Its Flavor Components 2. Effects of Temperature, Salinity and pH on the Growth of Bacteria from Isolated Low Salt Fermented Squid (저염 오징어젓갈 제조 방법 및 향미 성분 2. 온도, 염도 및 pH가 저염 오징어젓갈 숙성 세균의 발육에 미치는 영향)

  • 김영만;이원재;정윤미;허성호;최성희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.631-635
    • /
    • 1995
  • In order to develop effective manufacturing method and to improve quality of low-salt fermented squid(10% of table salt), we investigated the effects of temperature, salinity and pH on the growth of Staphylococcus xylosus, Micrococcus varians, Pseudomonas diminuta and Pseudomonas D2 isolated from of low-salt fermented squid and the growth characteristics of these bacteria during fermentation were elucidated. All bacteria showed good growth during the process of low-salt fermented squid(pH 6~7 ; concentration of NaCl, 7~10% ; temperature, 7~1$0^{\circ}C$) and their cell numbers increased as fermentation proceeded under the same fermentation condition.

  • PDF

Large Scale Alcohol Fermentation with Cassava Slices at tow Temperature (Cassava 전분의 저온 증자에 의한 공업적 규모의 알코올 발효)

  • Ryu, Beung-Ho;Nam, Ki-Du
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.75-79
    • /
    • 1987
  • The conventional alcohol fermentation method requires a large amount of energy for cooking the starchy raw materials prior to saccharification. The aim of this study was to compare the possibility of large scale alcohol fermentation from cassava slices were compared in low and high temperature cooking systems. The same amount of saccharifying and liquefying enzymes were used for cooking at low and high temperature. At low temperature cooking, conversion of glucose consumed in fermented mash to alcohol was 0.468g alcohol per g glucose of which was higher yield than that obtained at high temperature.

  • PDF

Effect of Temperature and Salt Concentration on Kimchi Fermentation (김치발효에 미치는 온도 및 식염농도의 영향)

  • Mheen, Tae-Ick;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.443-450
    • /
    • 1984
  • Chemical and microbial changes during Kimchi (a group of Korean seasoned pickles) fermentation were carried out at various temperatures and salt concentrations. The time reaching optimum ripening of Kimchi varied depending upon fermentation temperature and salt concentration. At high temperature and low salt content Kimchi fermentation was faster than at low temperature and high salt content. The ratio of volatile to non-volatile acids reached its maximum at the optimum ripening time of Kimchi and decreased thereafter. Leu. mesenteroids, Lac. brevis, Lac. plantarum, Ped. cerevisiae, Str. faecalis and low acid producing Lactobacilli were isolated from Kimchi samples. However, the main microorganism responsible for Kimchi fermentation was Leu. mesenteroides and Lac. plantarum was the main acidifying organism. Total viable count increased rapidly in the beginning of fermentation and reached its maximum number at optimum ripening time and then decreased slowly as the acidity of Kimchi increased. While the total aerobic bacteria and fungi decreased during Kimchi fermentation, the yeast increased significantly at lower temperature.

  • PDF

Development of an Enrichment Culture Growing at Low Temperature used for Ensiling Rice Straw

  • Yang, Hong Yan;Wang, Xiao Fen;Gao, Li Juan;Haruta, Shin;Ishii, Masaharu;Igarashi, Yasuo;Cui, Zong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.711-717
    • /
    • 2008
  • To speed up the conversion of rice straw into feeds in a low-temperature region, a start culture used for ensiling rice straw at low temperature was selected by continuous enrichment cultivation. During the selection, the microbial source for enrichment was rice straw and soil from two places in Northeast China. Lab-scale rice straw fermentation at $10^{\circ}C$ verified, compared with the commercial inoculant, that the selected start culture lowered the pH of the fermented rice straw more rapidly and produced more lactic acid. The results from denatured gradient gel eletrophoresis showed that the selected start culture could colonize into the rice straw fermentation system. To analyze the composition of the culture, a 16S rRNA gene clone library was constructed. Sequencing results showed that the culture mainly consisted of two bacterial species. One (A) belonged to Lactobacillus and another (B) belonged to Leuconostoc. To make clear the roles of composition microbes in the fermented system, quantitative PCR was used. For species A, the DNA mass increased continuously until sixteen days of the fermentation, which occupied 65%. For species B, the DNA mass amounted to 5.5% at six days of the fermentation, which was the maximum relative value during the fermentation. To the authors' best knowledge, this is the first report on ensiling rice straw with a selected starter at low temperature and investigation of the fermented characteristics.

The Effects of Low Temperature Heating and Mustard Oil on the Kimchi Fermentation (열처리 및 겨자유의 첨가가 김치 발효에 미치는 영향)

  • Hong, Wan-Soo;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.331-337
    • /
    • 1989
  • In order to investigate the method for extension of shelf-life of Kimchi, the effect of low temperature heating and addition of mustard oil on pH and total acidity of Kimchi during storage at $15^{\circ}C$ were studied. Mustard oil was found to have the antimicrobial effect on the major lactic acid bacteria of Kimchi such as Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides and Pediococcus cerevisiae, Addition of 200p.p.m. mustard oil, 0.1% mustard powder and 0.01% $H_2O_2$ to Kimchi effectively reduced the fermentation rate of Kimchi. Low temperature heating of salted cabbage and addition of 200p·p.m. mustard oil and 0.01% $H_2O_2$ to seasonings extented the time reaching optimum ripening of Kimchi about 2.5 times longer than control. Combination of low temperature heating, addition of mustard oil and $H_2O_2$ to seasonings and post low temperature heating delayed fermentation time Kimchi about 5 times longer than control after 15 days storage at $15^{\circ}C$.

  • PDF

Antioxidant Activity of Yogurt Fermented at Low Temperature and Its Anti-inflammatory Effect on DSS-induced Colitis in Mice

  • Yoon, Ji-Woo;Ahn, Sung-Il;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.162-176
    • /
    • 2019
  • This study was performed to evaluate the antioxidant activity of yogurt fermented at low temperature and the anti-inflammatory effect it has on induced colitis with 2.5% dextran sodium sulfate (DSS) in Balb/c mice. Yogurt premix were fermented with a commercial starter culture containing Lactobacillus acidophilus, Bifidobacterium lactis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus at different temperatures: $22^{\circ}C$ (low fermentation temperature) for 27 h and $37^{\circ}C$ (general fermentation temperature) for 12 h. To measure antioxidant activity of yogurt samples, DPPH, $ABTS^+$ and ferric reducing antioxidant potential (FRAP) assays were conducted. For animal experiments, inflammation was induced with 2.5% DSS in Balb/c mice. Yogurt fermented at low temperature showed higher antioxidant activity than that of the yogurt fermented at general temperature. In the inflammatory study, IL-6 (interleukin 6) was decreased and IL-4 and IL-10 increased significantly in DSS group with yogurt fermented at general temperature (DYG) and that with yogurt fermented at low temperature (DYL) compared to that in DSS-induced colitic mice (DC), especially DYL had higher concentration of cytokines IL-4, and IL-10 than DYG. MPO (myeloperoxidase) tended to decrease more in treatments with yogurt than DC. Additionally, yogurt fermented at low temperature had anti-inflammatory activity, although there was no significant difference with general temperature-fermented yogurt (p>0.05).