• Title/Summary/Keyword: low-speed bearing

Search Result 130, Processing Time 0.022 seconds

A Study on the Friction and Wear Characteristics of $Al_2O_3-TiC$ ($Al_2O_3-TiC$의 마찰 및 마모특성에 관한 연구)

  • 조구환;이기현;김경웅
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 1992
  • Friction and wear behavior of hot isostatic pressed $Al_2O_3-TiC$ was experimentally examined. Pin-on-disk type friction and wear apparatus was designed and manufactured for the experiment. The experiments were conducted under unlubricated sliding motion in both low and high humidity for three kinds of sliding speed. $Al_2O_3-TiC$ and bearing steel were used as counterface materials. Friction coefficient, wear rate, and surface roughness were measured. Wear surface and wear debris were observed through optical microscope and SEM and analyzed by EDAX. The results showed that the counterface materials, the sliding speed, and the moisture at the sliding surface have significant influence on the friction coefficient and wear rate of $Al_2O_3-TiC$.

Development of Wafer Grinding Spindle with Porous Air Bearings (다공질 공기 베어링을 적용한 반도체 웨이퍼 연마용 스핀들 개발)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Gyunchul Hur;Kisoo Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Because of their cleanliness, low friction, and high stiffness, aerostatic bearings are used in numerous applications. Aerostic bearings that use porous materials as means of flow restriction have higher stiffness than other types of bearings and have been successfully applied as guide bearings, which have high motion accuracy requirements. However, the performances of porous bearings exhibit strong nonlinearity and can vary considerably depending on design parameters. Therefore, accurate prediction of the performance characteristics of porous bearings is necessary or their successful application. This study presents a porous bearing design and performance analysis for a spindle used in wafer polishing. The Reynolds and Darcy flow equations are solved to calculate the pressures in the lubrication film and porous busing, respectively. To verify the validity of the proposed analytical model, the calculated pressure distribution in the designed bearing is compared with that derived from previous research. Additional parametric studies are performed to determine the optimal design parameters. Analytical results show that optimal design parameters that obtain the maximum stiffness can be derived. In addition, the results show that cross-coupled stiffness increases with rotating speed. Thus, issues related to stability should be investigated at the design stage.

Evaluation of Electrical Damage to Electric-vehicle Bearings under Actual Operating Conditions (실제 운전조건을 고려한 전기자동차 베어링의 전기적 손상 평가 )

  • Jungsoo Park;Jeongsik Kim;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.40 no.4
    • /
    • pp.111-117
    • /
    • 2024
  • Due to global CO2 emission reductions and fuel efficiency regulations, the trend toward transitioning from internal combustion engine vehicles to electric vehicles (EVs) has accelerated. Consequently, the problem of EV failures has become a focal point of active research. The parasitic capacitance generated during motor-shaft rotation induces voltage that deteriorates the raceway and ball surfaces of bearings, causing electrical damage in EVs. Despite numerous attempts to address this issue, most studies have been conducted under high viscosity lubricant and low load conditions. However, due to factors such as high-speed operation, rapid acceleration and deceleration, motor heating, and motor system-decelerator integration, current EV applications have shown diminished stability in lubrication films of motor bearings, thereby leveraging the investigation to address the risk of electrical damage. This study investigates the electrical damage to rolling bearing elements in EV motor drive systems. The experimental analysis focuses on the effects of electric currents and operational loads on bearing integrity. A test rig is designed to generate high-rate voltage specific to a motor system's parasitic capacitance, and bearing samples are exposed to these currents for specified durations. Component evaluation involves visual inspections and vibration measurements. In addition, a predictive model for electrical failure is developed based on accumulated data, which demonstrates the ability to predict the likelihood of electrical failure relative to the duration and intensity of current exposure. This in turn reduces uncertainties in practical applications regarding electrical erosion modes.

The Effect of Change in Gait Speed on Vertical Force of the Cane and Distribution of Affected Foot in the Persons with Chronic Stroke (보행속도의 변화가 만성 뇌졸중 환자 지팡이의 수직력과 마비측 발의 체중지지에 미치는 영향)

  • Jung, Kyoung-Sim;Seo, Hyun-Du;Lee, Kwan-Woo;Chung, Yi-Jung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.223-230
    • /
    • 2012
  • Purpose : The purpose of this study was to analyze weight bearing of cane and affected foot at different speeds during walking. Methods : Thirteen subjects (6 males, 7 females) with stroke enrolled in the study. A foot sensor and an instrumented cane were integrated to analyze the vertical peak force on the affected foot and the cane. Results : The applied vertical peak force on the cane were $12.02{\pm}4.80%$ (slow speed), $7.97{\pm}3.95%$ (comfortable speed), and $6.86{\pm}3.30%$ (fast speed) body weight, respectively. The results indicated significantly lower vertical peak force on the affected foot in the low speed walking condition when compared to the fast walking (p<.05) and the comfortable walking (p<.05) conditions. The correlations between TUG and vertical peak force on the cane and affected foot were .71, and -.70 (p<.01). There was a higher correlation between the vertical peak force on the cane and affected foot were -.87(p<.01). Conclusion : In conclusion, slower walking speed applied greater vertical peak force on the cane. On the contray, slower walking speed applied less vertical peak force on the affected foot. Further studies, duration of force should be measured at different speeds during walking in lower and higher functioning hemiparetic subjects, as its use may mask underlying gait impairment.

Design of 5kWh Flywheel Energy Storage System to Improve Dynamics (5kWh Flywheel 에너지저장장치 시스템의 동특성 향상 설계)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong;Lee, Sung-Whee;Yun, Dong-Won;Han, Young-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.99-106
    • /
    • 2008
  • 5kWh FESS(Flywheel Energy Storage System) using AMB(Active Magnetic Bearing) has been under development and 1st trial system has been finished and run the operating test. Unfortunately, the test result was not satisfactory because FESS could increase the rotational speed up to 9,000 rpm only although the target rotational speed is 18,000rpm. It's because 1st bending mode frequency of flywheel shaft was too low and imbalance response was too big. To achieve the target speed, 1st bending mode and imbalance response must be improved and the whole FESS needed to be designed again. This paper presents the newly designed FESS and what has been changed from the 1st trial FESS to improve 1st bending mode and imbalance response. The experimental results to see how much 1st bending mode frequency was improved are presented, too.

Analytical evaluation of water injection pump dynamic characteristic (물 분사 펌프 동특성의 해석적 평가)

  • Lee, JongMyeong;Lee, JeongHoon;Ha, JeongMin;Ahn, ByungHyun;Gu, DongSik;Choi, ByeongKeun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.60-64
    • /
    • 2013
  • Water injection pump produced the 1st oil well through the high pressure after the Deep water oil well drilling. After finish the work it is hard to produce only using itself pressure due to low pressure. Therefore it can be increased recovery factor through the injection seawater of high pressure. Is the key equipment used in the marine plant and it is developing at many industries. In this paper, Analyze changes in the natural frequency due to the stiffness of the bearing. Analyze the critical speed of the natural frequency due to the change of operation speed. And evaluate the Stability. And then analyze the displacement and clearance through the unbalance response this way has contributed to the reliability of the developing product. Through a mathematical analysis.

  • PDF

Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system (인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

Artificial neural network controller for automatic ship berthing using head-up coordinate system

  • Im, Nam-Kyun;Nguyen, Van-Suong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.235-249
    • /
    • 2018
  • The Artificial Neural Network (ANN) model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller. First, teaching data were created in the original port to train the neural network; then, the controller was tested for automatic berthing in other ports, where the initial conditions of the inputs in the head-up coordinate system were similar to those of the teaching data in the original port. The results showed that the proposed controller has good performance for ship berthing in ports.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

Development of the Extracting Technique of the Character Parameter for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템을 위한 특징 파라미터 추출기법 개발)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2019
  • This paper aimed at collecting sensor signals to extract characteristic parameter of the rotor. A vibration test rig has been developed to perform model tests. Signal characteristics were analyzed when driving normally. Envelope FFT Analysis is used to extract vibration components caused by periodic impacts from other vibration factors. Signal analysis was performed when load changes were given to speed sensors and vibration test rigs that show low frequency characteristics of the rotor and signal analysis according to rotational speed. The acceleration signal measured in the bearing housing has a small amplitude and produces only the rotational frequency component and harmonic component of the motor. As the number of rotations increases, the amplitude of acceleration can be seen. As the rotational speed increases, it can be seen that there is a difference in the shape of the original data and compared with the acceleration FFT graph, it can be seen that the noise is strong at low frequencies and the corresponding rotational frequency components are clearly represented. It can be seen that changing the load does not increase the main rotational frequency component.