• Title/Summary/Keyword: low-rise structures

Search Result 344, Processing Time 0.022 seconds

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.

Structural performance and SWOT analysis of multi-story buildings of lightweight reinforced concrete comprising local waste materials

  • Walid A., Al-Kutti;A.B.M. Saiful, Islam;Zaheer Abbas, Kazmi;Mahmoud, Sodangi;Fahad, Anwar;Muhammad, Nasir;Muhammad Arif Aziz, Ahmed;Khalid Saqer, Alotaibi
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.493-502
    • /
    • 2022
  • In recent decades, infrastructural development has exploded, particularly in the coastal region of Saudi Arabia. The rising demand of most consumed aggregate in construction can be effectively compensated by the alternative material like scoria which lavishly exists in the western region. Scoria is characterized as lightweight aggregate beneficially used to develop lightweight concrete (LWC) - a potential alternative of normal weight concrete (NWC) ensuring reduction in the structural element's size, increase in building height, comparatively lighter foundation, etc. Hence, the goal of this study is to incorporate scoria-based structural lightweight concrete and evaluate its impact on superstructure and foundation design beside contributing to the economy of construction. Fresh, mechanical, and rheological properties of the novel LWC have been investigated. The structural analyses employ the NWC as well as LWC based structures under seismic and wind loadings. The commercial finite element package - ETABS was employed to find out the change in structural responses and foundations. The cost estimation and SWOT analysis for superstructure and foundation have also been carried out. It was revealed that the developed LWC enabled a more flexible structural design. Notable reduction in the steel and concrete prices of LWC might be possible in the low-rise building. It is postulated that the cost-effective and eco-friendly LWC will promote the usage of scoria as an effective alternative in Saudi Arabia and GCC countries for structurally viable LWC construction.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Assessment of cold-formed steel screwed beam-column conections: Experimental tests and numerical simulations

  • Merve Sagiroglu Maali;Mahyar Maali;Zhiyuan Fang;Krishanu Roy
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.515-529
    • /
    • 2024
  • Cold-formed steel (CFS) is a popular choice for construction due to its low cost, durability, sustainability, resistance to high environmental and seismic pressures, and ease of installation. The beam-column connections in residential and medium-rise structures are formed using self-drilling screws that connect two CFS channel sections and a gusset plate. In order to increase the moment capacity of these CFS screwed beam-column connections, stiffeners are often placed on the web area of each single channel. However, there is limited literature on studying the effects of stiffeners on the moment capacity of CFS screwed beam-column connections. Hence, this paper proposes a new test approach for determining the moment capacity of CFS screwed beam-column couplings. This study describes an experimental test programme consisting of eight novel experimental tests. The effect of stiffeners, beam thickness, and gusset plate thickness on the structural behaviour of CFS screwed beam-column connections is investigated. Besides, nonlinear elasto-plastic finite element (FE) models were developed and validated against experimental test data. It found that there was reasonable agreement in terms of moment capacity and failure mode prediction. From the experimental and numerical investigation, it found that the increase in gusset plate or beam thickness and the use of stiffeners have no significant effect on the structural behaviour, moment capacity, or rotational capacity of joints exhibiting the same collapse behaviour; however, the capacity or energy absorption capacities have increased in joints whose failure behaviour varies with increasing thickness or using stiffeners. Besides, the thickness change has little impact on the initial stiffness.

Study on Hydration Heat of Blended Belite Binder (벨라이트계 혼합 결합재의 수화열 특성에 관한 연구)

  • Lee, Kewn-Chu;Cho, Jae-Woo;Jung, Sang-Hwa;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Presently, mass concrete structures are being built in federal and private projects of civil infrastructures and building structures. The hydration heat of mass concrete structures is the most important factor in the quality of concrete matrix and construction period. Moreover, internal cracks caused by hydration heat degrades durability, water tightness, and strength of concrete. To reduce hydration heat, it is necessary to blend belite cement (${\beta}-C_2S$) with industrial by-products (i.e. granulated slag and fly ash). In this experiment, 14 levels of binary binders and 4 levels of ternary binders were used to understand the effect of different replacement ratio on hydration heat, strength and microstructure (i.e. SEM and XRD) of mortar. Cumulative hydration heat at 28 days for the binary and ternary binders was affected by replacement ratio of fly ash and/or granulated slag. As fly ash content increased, hydration heat decreased. As granulated slag content increased, reduction rate of the hydration heat was lower than when fly ash was used. Especially, the hydration heat of ternary binder blended with 40% flyash and 30% granulated slag showed about 50% of hydration heat from using belite cement (P). The study results showed that the temperature rise of concrete matrix can be decreased by using blended belite binders producing low hydration heat and reasonable strength.

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag (고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구)

  • Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2022
  • Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Vibration Characteristics of a Building Before and After Damage by Actual Measurement (실측을 통한 건물의 손상 전.후 진동특성 평가)

  • Yoon, Sung-Won;Park, Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.445-453
    • /
    • 2010
  • Recently, the remodeling projects of old low-rise buildings were launched in Korea. However, most of them were not satisfied with the value set forth by the KBC2005. Even though there are some research studies on how to improve the seismic performance of such buildings as newly constructed buildings, there is little research in measuring the actual vibrations on low old buildings to prove the effect of retrofit. There also has not been any in-depth research on the dynamic characteristics of full-scale structures using vibration measurements of the building that was damaged to failure. Using an actuator, the dynamic characteristics of reinforced three-storey concrete buildings were evaluated before and after they were damaged. After an 80-mm horizontal displacement by the actuator, frequency in the long and short directions were reduced to 20.85% and 5.77% respectively ; damping ratio was also reduced to 53.9% and 23.15% respectively.

Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel (복합재 패치로 보수된 알루미늄 패널의 피로균열 성장거동과 AE신호의 유형인식)

  • Kim, Sung-Jin;Kwon, Oh-Yang;Jang, Yong-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by usiag the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location.