• 제목/요약/키워드: low-rise structures

검색결과 342건 처리시간 0.021초

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.

A model of roof-top surface pressures produced by conical vortices : Model development

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.227-246
    • /
    • 2001
  • The objective of this study is to understand the flow above the front edge of low-rise building roofs. The greatest suction on the building is known to occur at this location as a result of the formation of conical vortices in the separated flow zone. It is expected that the relationship between this suction and upstream flow conditions can be better understood through the analysis of the vortex flow mechanism. Experimental measurements were used, along with predictions from numerical simulations of delta wing vortex flows, to develop a model of the pressure field within and beneath the conical vortex. The model accounts for the change in vortex suction with wind angle, and includes a parameter indicating the strength of the vortex. The model can be applied to both mean and time dependent surface pressures, and is validated in a companion paper.

RC구조물의 해체공법 조합방안 (Reasonable Demolition Method Combination of RC Structures)

  • 김세범;양진국;이상범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.177-178
    • /
    • 2016
  • The main structure of the building has been used reinforced concrete construction method in Korea. In recent years, it is necessary to demolition of buildings into urban redevelopment. But yet the demolition method is not being developed perfect. It is necessary to develop future deconstruction for safety and environment method. In this study, we surveyed the demolition method has been used in domestic construction. How the combination of these demolition method should be needed. Demolition method combinations were classified as low-rise, high-rise, middle. It suggested method to combine the demolition process of reinforced concrete structure with seven.

  • PDF

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • 제6권1호
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.

Rubber bearing isolation for structures prone to earthquake - a cost effectiveness analysis

  • Islam, A.B.M. Saiful;Sodangi, Mahmoud
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.261-272
    • /
    • 2020
  • Recent severe earthquakes in and around the vital public places worldwide indicate the severe vulnerability of ground excitation to be assailed. Reducing the effect of seismic lateral load in structural design is an important conception. Essentially, seismic isolation is required to shield the superstructure in such a way that the building superstructure would not move when the ground is shaking. This study explores the effectiveness, design, and practical feasibility of base isolation systems to reduce seismic demands on buildings of varying elevations. Thus, static and dynamic analyses were conducted based on site-specific bi-directional earthquakes for base-isolated as well as fixed-based buildings. Remarkably, it was discovered that isolators used in low-rise to high-rise structures tend to significantly decrease the structural responses of seismic prone buildings. The higher allowable horizontal displacement induces structural flexibility and ensure good structural health of the building stories. Reinforcement from vertical and horizontal members can be reduced in significant amounts for BI buildings. Thus, although incorporating base isolators increases the initial outlay, it considerably diminishes the total structural cost.

Pushing the Boundaries of Mass Timber Construction and Building Codes

  • Dubois, Jean-Marc;Frappier, Julie;Gallagher, Simon;Structures, Nordic
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.261-271
    • /
    • 2020
  • The 2020 National Building Code of Canada (NBC) and the 2021 International Building Code (IBC) both include Tall Wood Buildings (TWB) and are hailed as documents responsible for the proliferation of Mass Timber construction. Mass Timber construction is critical to reducing the carbon footprint of the construction industry; a sector acknowledged as being one of the greatest contributors of global annual CO2 emissions. Origine, a 13-storey multi-residential building erected in 2017 in a previously unsuitable site, is currently the tallest all-wood building in North America. This article describes the challenges overcome by the designers and client as they engaged with code officials, building authorities, and fire-service representatives to demonstrate the life-safety performance of this innovative building. It also traces the development of the "Guide for Mass Timber Buildings of up to 12 Storeys" published in Quebec and how it has enabled other significant Tall Wood projects across North America.

A proposed technique for determining aerodynamic pressures on residential homes

  • Fu, Tuan-Chun;Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Yeo, DongHun;Simiu, Emil
    • Wind and Structures
    • /
    • 제15권1호
    • /
    • pp.27-41
    • /
    • 2012
  • Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.

Constructing Tall Buildings in China: With a Focus on Shanghai

  • Kheir Al-Kodmany
    • 국제초고층학회논문집
    • /
    • 제13권1호
    • /
    • pp.33-56
    • /
    • 2024
  • This paper examines China's rapid shift from low-rise to high-rise urban development, focusing on Shanghai as a case study. It provides a detailed analysis of the rapid vertical developments over the past five decades, highlighting gradual and sudden tall building changes. The study also surveys tall building development in the ten "tallest cities" across China, including Hong Kong, Shenzhen, Guangzhou, Shanghai, Wuhan, Chongqing, Chengdu, Shenyang, Hangzhou, and Nanning, while listing the tallest ten buildings in each city. The focus is on the drivers behind these towering structures: globalization, an economic powerhouse, and finance center, urbanization and population density, architectural innovation and ambition, competition and prestige, land availability and utilization, government support and planning, and tourism. The paper critically examines the sustainability of this trend in light of new Chinese policies restricting the construction of high-rise buildings exceeding 500m and 250m in smaller cities due to safety and security concerns. This prompts a reflection on the long-term viability and implications of the predominantly high-rise trajectory in urban development.

A semi-active mass damping system for low- and mid-rise buildings

  • Lin, Pei-Yang;Lin, Tzu-Kang;Hwang, Jenn-Shin
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.63-84
    • /
    • 2013
  • A semi-active mass damping (SMD) system with magnetorheological (MR) dampers focusing on low- and mid-rise buildings is proposed in this paper. The main purpose of this study is to integrate the reliable characteristics of the traditional tuned mass damper (TMD) and the superior performance of the active mass damper (AMD) to the new system. In addition, the commonly seen solution of deploying dense seismic dampers throughout the structure nowadays to protect the main structure is also expected to switch to the developed SMD system on the roof with a similar reduction performance. In order to demonstrate this concept, a full-size three-story steel building representing a typical mid-rise building was used as the benchmark structure to verify its performance in real life. A numerical model with the interpolation technique integrated was first established to accurately predict the behavior of the MR dampers. The success of the method was proven through a performance test of the designated MR damper used in this research. With the support of the MR damper model, a specific control algorithm using a continuous-optimal control concept was then developed to protect the main structure while the response of the semi-active mass damper is discarded. The theoretical analysis and the experimental verification from a shaking table test both demonstrated the superior mitigation ability of the method. The proposed SMD system has been demonstrated to be readily implemented in practice.

인천 LNG지하탱크 Sidewall의 온도균열제어 (Temperature Crack Control about Sidewall of LNG in Inchon)

  • 구본창;김동석;하재담;김기수;최롱;최웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.329-332
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like sidewall of LNG in Inchonl.

  • PDF