• Title/Summary/Keyword: low-rise building

Search Result 426, Processing Time 0.031 seconds

Seismic Evaluation of Low-rise RC Building in korea (국내 저층구조물의 내진성능평가)

  • Park, Jin Hwa;Ahn, Tea Sang;Seo, Hyun Sik;Kim, Sang Dea
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.29-29
    • /
    • 2011
  • 국내에서 기존건축물의 내진성능평가 기법이 연구되기 시작한지 20여 년간 다양한 평가방법이 제안되었다. 그러나, 제안된 평가방법은 미국이나 일본의 평가 방법을 도입 및 수정하는 내용이 주가 되어 국내실정에 맞지 않는 부분도 많이 발견되었다. 따라서 국내에서 제안된 기존 건축물의 내진성능 평가기법, 지진피해예측에 근거한 보강건축물의 합리적인 선정방법 및 이들 건축물에 적합한 내진보강방법 등의 연구는 아직까지 초보적인 단계라고 할 수 있다. 이에 본 연구의 목적은 이러한 평가 기법을 적용한 국내 저층구조물의 내진성능을 평가하는 것이다. 저층구조물의 내진성능을 평가하기 위하여 1988년 내진설계가 도입되기 이전에 건립된 4층 규모의 학교구조물을 해석대상 구조물로 선정하였다. 대상 해석구조물의 내진성능평가는 일본의 내진성능 평가법을 참고하여 평가절차가 다소 복잡한 부분을 국내 실정에 맞게 개선시킨 내진화 우선도 평가방법과 정밀한 내진성능을 평하는 방법으로 세계적으로 널리 사용되고 있는 ATC-40 성능평가방법에서 등가단자유 모델로 변환 과정에서 등가유효감쇠 및 등가유효주기 산정 관계식의 문제점을 개선한 FEMA-440의 선형화 성능평가방법(Linearization Method)을 사용하여 구조물의 성능을 평가하였다. 내진 성능 평가를 위해 현재 전 세계적으로 널리 사용되고 있는 구조물 비선형 전용 해석 프로그램인 Perform-3D를 이용하여 해석을 수행하였다. 본 연구를 통해 기존 저층구조물로 선정한 학교구조물에 대한 내진성능을 평가한 결과, 내진화 우선도 평가법 및 FEMA-440의 내진성능 평가는 유사한 경향의 결과를 나타내었고, 두 평가결과를 요약하면 Y방향은 보와 기둥에 끼인 조적벽체의 영향으로 별도의 내진성능이 향상 보강이 필요없으나, X방향은 창문하부 허리 조적벽 등의 영향으로 다소 취성적인 내진성능을 보유하고 있어 충분한 내진성능 확보를 위한 추가적인 보강이 필요한 것으로 판단된다.

  • PDF

Compressive Behavior of H-section Brace Strengthened by Non-welded Cold-Formed Element (무용접 냉간성형 조립재로 보강한 H형강 가새의 압축거동)

  • Kim, Sun Hee;Kim, Do Bum;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, Seismic performance of the building built in the past is required to review, because the code for seismic design have been reinforced. In 2009, if the revised latest criteria of seismic design is applied, the majority the steel structure of the low-rise concentrically braced system is short of the seismic performance. Also, when the steel braces are subject to compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement. Therefore, this study suggests restraining the bending buckling of slender H-shaped braces to resist compressive force. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement.

Evaluation of Load-Carrying Capacity Loss due to Corrosion in Thin-Walled Section Steel Members (판폭두께비가 큰 휨부재의 부식발생에 따른 구조성능평가에 관한 연구)

  • Chung, Kyung Soo;Park, Man Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.619-626
    • /
    • 2009
  • The use of thin-walled flexural members has proven to be a practical way to achieve the lowest cost in the construction of prefabricated long-span, low-rise building frames in steel. On the other hand, most of these structures are subjected to corrosion due to environmental exposure, which can reduce their carrying capacity. Corrosion damage is a serious problem for these structures as it causes thickness loss. That is, the class of a section (plastic, compact, non-compact, or slender) may change from one to another due to the loss of thickness of the compression flange and web due to corrosion. In this study, the effects of corrosion on thin-walled members in long-span steel frames were evaluated with regard to the moment-rotation curve, initial stiffness, maximum load capacity, stiffness in the post-maximum capacity, and energy absorption.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

A Study on the Passive House Technology Application of University Dormitory through The House at Cornell Tech (코넬 공과대학 기숙사 사례를 통한 대학 기숙사의 패시브 하우스 기술 적용에 관한 연구)

  • Kim, Hong-Min;Oh, Hyoung-Seok;Ryu, Soo-Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.11-18
    • /
    • 2018
  • Global warming is happening now and inevitable. Everyone knows that immediate action should be taken to slow it down, but uncertain about the effective solution. Despite global efforts to reduce greenhouse gas emissions, sea levels are rising gradually. In 2013, Cornell University announced the Climate Action Plan(CAP) to make the campus greener, to reduce waste, and to ensure efficient use of resources. In particular, they set a goal of reducing energy use by 2050 and making carbon emissions to zero. Accordingly, the purpose of this study is to analyse the case of the master plan of Cornell Tech campus and its major buildings. Mainly, The House, faculty and student housing of Cornell Tech and the world tallest certified passive house, will be the main precedent that shows the architectural planning of passive house. Passive house technology, which was thought to be possible only in single-family houses, can be applied to high-rise buildings. If any passive house technology of The House project is actively introduced into the dormitory projects of domestic universities that are about to be built or renovated, it will be a good opportunity for the university to take the lead in preparing for global warming.

Coping Styles about Residential Environmental Stress among Apartment Housing Dwellers - Focus on the Gwangju City - (아파트 거주자의 주거환경 스트레스에 대한 대처방식 유형 - 광주시를 중심으로 -)

  • Noh, Se-Hee;Kim, Mi-Hee
    • Journal of the Korean housing association
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • Rapid social change affects residential environments and this in turn creates new stimuli to which people have to adapt. These stimuli have been seen to increase stress levels. Therefore, dwellers in these environments try to reduce stress through various methods. The purpose of this paper is to: 1) identify the general trends of coping styles about residential environmental stress, 2) analyze the differences in socio-demographic characteristics and how the physical characteristics of buildings affect stress, find out how personal backgrounds affect stress levels and the ability to get rid of environmental-related stress. The subjects in this study consisted of people living in multi-family housing in Gwangju. The city is divided into 5 districts and used quota sampling. 324 housewives were surveyed from the households by self-administered questionnaires. The survey was conducted in December, 2006, after the questionnaire was revised based on the results of preliminary survey. After all the questionnaires were collected, the data was coded and analyzed using the SPSS 12.0 program. This study confirmed that the manner in which those in multi-family housing coped with stress. Especially, we need a policy which seriously considers residents who are of low social-economic standing. As well as being exposed to residential environmental stress, they also have no means to deal with it. The age of a building had a strong impact on coping styles about residential environmental stress. We have to make special studies about the adaptive reuse of buildings for the reduction of residential environmental stress and to greatly improve coping styles. In conclusion, it emphasized the importance of education, information, and economic aid. Reasonable housing management would surely lead to a rise in residential satisfaction and the promotion of residential welfare.

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

A Study on the Deformation Characteristics of the Roof Signboard Size in Wind Pressure Formation (풍압 형성에 따른 옥상광고판 크기별 특성에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.401-408
    • /
    • 2019
  • This study numerically examined the maximum wind pressure distribution of a billboard on the roof of a middle-rise building. The deformation caused by the maximum wind pressure was examined. For the numerical analysis, the signboard was assumed to be installed on $(b)20m{\times}(d)10m{\times}(h)$ buildings. The maximum wind pressure was measured using four models with the standard model and different sizes of the signboard. The numerical analysis showed that the horizontal deformation predominantly occurs as the shape of the signboard becomes closer to a rectangle, and high wind pressure and deformation occur at the corners of both ends. As the height of the signboard increases, vertical deformation predominantly occurs, and static pressure forms on the backside. When the height is lower than the width of the signboard, the wind pressure is concentrated on the center of the roof. Therefore, the distribution of the maximum wind pressure is stable, and the effect of the wind pressure is relatively low as the height-to-width ratio approaches 1.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.