• Title/Summary/Keyword: low-rise

Search Result 1,682, Processing Time 0.03 seconds

A Study on Establishment of Buffer Zone of Radioactive Waste Repository (방사성패기물 처분시설에서의 완충공간 설정에 대한 고찰)

  • Yoon, Jeong-Hyoun;Park, Joo-Wan;Ju, Min-Su;Kim, Chang-Lak;Park, Jin-Baek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • A new proposed repository has a final capacity of 800,000 drums radioactive waste. Most of foreign repositories have a general practice of segregating control zones which mainly contributes to classification of degree of control, whether it is called buffer zone or not. Domestic regulatory requirements of establishment of buffer zone in a repository are not much different from those of nuclear power plants for operation period, in which satisfactory design objective or performance objective is the most important factor in determination of the buffer zone. The meaning of buffer zone after closure is a minimum requested area which can prevent inadvertant intruders from leading to non-allowable exposure during institutional control period. Safety assessment with drinking well scenario giving rise to the highest probability of exposure among the intruder's actions can verify fulfillment of the buffer zone which is determined by operational safety of the repository. At present. for the repository to be constructed in a few years, the same procedure and concept as described in this paper are applied that can satisfy regulatory requirements and radiological safety as well. However, the capacity of the repository will be stepwise extended upto 800,000 drums, consequently its layout will be varied too. Timely considerations will be necessary for current boundary of the buffer zone which has been established on the basis of 100,000 drums disposal.

  • PDF

Hydrodynamic Characteristics of Self-expandable Graft Stents in Steady Flow (정상유동에서 자가팽창성 그래프트 스텐트의 수력학적 특성)

  • 이홍철;김철생;박복춘;박복춘
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • This experimental study is aimed at evaluating the hydrodynamic performance of newly designed self-expandable graft stents under steady flow condition. Two graft stents with different coating materials and a bare TiNi metallic stent for comparison test were used in the experiment. Pressure variation and velocity distribution at the upstream and downstream of the stents were measured at flow rates of 5, 10, and 15 l/min, respectively. Pressure loss due to insertion of the stent increased with increasing flow rate exponentially as expected. At a flow rate of 15 l/min, pressure loss of Polyure-thane(PU)-coated graft stent was 6 times higher than that of TiNi metallic stent, while the pressure loss of a porous Polytetrafluoroethylene(PTFE)-coated graft stent was comparable to a bare TiNi metallic stent. Velocity profiles of the porous PTFE-coated graft stent were similar to those of a bare TiNi metallic stent regardless of flow rate. Furthermore, the velocity profile of PU-coated graft stent revealed an asymmetrical and relatively low central velocity at a higher flow rate than 10 1/min, expecially, where the effects resulted in increases of wall shear stress and normal stress. The worse hydrodynamic behavior of PU-coated graft stent than the other two stents might be attributed to formation of folds due to poor flexibility of coated material when inserting the graft stent into the pipe with a more smaller size, which later gave rise non-symmetry of flow area, increase of surface roughness and jet flow via the crevice between the stent and cylinder wall.

A STUDY OF THE IONOSPHERIC ELECTRON MEASUREMENT ON THE MEDIUM-SIZED SCIENTIFIC ROCKET , KSR-II (중형과학로켓, KSR-II를 이용한 이온층 전자 밀도 및 온도 분포 측정에 관한 연구)

  • Lee, Jae-Jin;Kim, Jhoon;Lee, Soo-Jin;Min, Kyoung-Wook;Pyo, You-Surn;Cho, Gwang-Rae;Rhee, Hwang-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.401-415
    • /
    • 1998
  • This paper reports the results obtained from the Langmuir probe (LP) and Electron Temperature Probe (ETP) experiments on the sounding rocket KSR-II (Korean Scientific Rocket - II) which was launched on Jun 11, 1998 at 10:00 KST from Tae-An peninsula (37$^{\circ}$ N, 126$^{\circ}$ E). The instruments successfully measured the electron density, electron temperature, and the floating potential at altitudes of 73km to 130km. While the electron temperature measurement is not easy in this region, since the temperature is very low and the contamination effect of the probe may give rise to a problem, we were able to obtain a reasonable electron temperature profile by employing two independent methods, the pulse modulated Langmuir Probe and Electron Temperature Probe. The preliminary results show that electron density increases sharply at about 90km, and forms a peak at 102km. The density profile is roughly consistent with IRI (International Reference Ionosphere)95-model or PIM (Parameterized Ionospheric Model) results except that the peak density appears at 110km in the model and model electron density is slightly lower than the observed one. Electron temperature obtained from ETP fluctuates between 200$^{\circ}$K and 700$^{\circ}$K, an effect presumably coming from the wakes developed by LP, and it tends to increase with the altitude, which is consistent with the LP results.

  • PDF

Dead Operation Characteristics of Earth Leakage Circuit Breaker for 50[A] Against Surge Voltages (서지전압에 대한 50[A]용 누전차단기의 부동작 특성)

  • 이승칠;장석훈;이복희
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.5
    • /
    • pp.44-52
    • /
    • 1997
  • Electronic circuits with semiconductor and IC are very weak against the surge voltage and currents. The surge protective devices for electronic circuit and AC power lines are becoming more widely used. It is possible to give rise to the malfunction of the earth leakage circuit breaker(ELB) due to the operation of surge protective devices, and the interruption of AC power lines on account of the malfunction of the ELB brings about several disadvantages such as low operation efficiency and reliability of electronic and informational systems, economical loss, and etc. The aim of the present work is to investigate the dead operation characteristics of the ELB against the surge voltages. The impulse generator of 10[kV) in an 1.2/ 50[~) voltage waveform was fabricated. The dead operation characteristics of the ELB applied by surge voltages were measured under the conditions of KS C 4613 and the test circuit with a varistor. As a consequence, the peak value of the zero-phase sequence circuit of the ELB is increased as the surge voltage and stray capacitance increase. All of the ELBs used in this work were satisfied with the lightning impulse dead operation test condition defined in KS C 4613. However one specimen only did not bring about dead operation in the condition of the test circuit with a varistor. There is high possibility that a large portion of the ELB installed at the AC power lines with the surge protective devices bring about the dead operation.

  • PDF

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Analysis of Wind Velocity Profile for Calculation of Wind Pressure on Greenhouse (온실의 풍압력 산정을 위한 풍속의 수직분포 분석)

  • Jung, Seung-Hyeon;Lee, Jong-Won;Lee, Si-Young;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.135-146
    • /
    • 2015
  • To provide the data necessary to determine the design wind speed for calculating the wind load acting on a greenhouse, we measured the wind speed below 10m height and analyzed the power law exponents at Buan and Gunwi. A wind speed greater than $5m{\cdot}s^{-1}$ is appropriate for calculating the power law exponent necessary to determine the wind speed distribution function according to height. We observed that the wind speed increased according to a power law function with increased height at Buan, showing a similar trend to the RDC and JGHA standards. Therefore, this result should be applied when determining the power law function for calculating the design wind speed of the greenhouse structure. The ordinary trend is that if terrain roughness increases the value of power law exponent also increases, but in the case of Gunwi the value of power law exponent was 0.06, which shows contrary value than that of the ordinary trend. This contrary trend was due to the elevations difference of 2m between tower installed and surrounding area, which cause contraction in streamline. The power law exponent started to decrease at 7 am, stopped decreasing and started to increase at 3 pm, and stopped increasing and remained constant at 12 pm at Buan. These changes correspond to the general change trends of the power law exponent. The calculated value of the shape parameter for Buan was 1.51, confirming that the wind characteristics at Buan, a reclaimed area near the coast, were similar to those of coastal areas in Jeju.

Empirical Orthogonal Function Analysis of Coastal Water Temperatures in the Tsushima Current Region (쓰시마난류역 연안 수온의 경험적 직교함수 분석)

  • CHOI Seog-Won;KANG Yong Q.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.2
    • /
    • pp.89-94
    • /
    • 1987
  • The fluctuations of sea surface temperatures (SST) and their anomalies in the Tsushima Current region are studied by means of empirical orthogonal function (EOF) analysis of the monthly SST data for 30 years (1941-1970) at 8 coastal stations. The overall features of the seasonal variation of SST are described by the first EOF mode, which explains $97.2\%$ of the total variance. Annual ranges of seasonal variation of SST and root-mean-square amplitudes of SST anomalies in the downstream of the Tsushima Current are larger than those in the upstream. The SST anomalies in the Tsushima Current region consist of simultaneous fluctuations, which explain $40.9\%$ of the total variance, and 'see-saw' fluctuations of which rise and fall in the upstream are opposite to those in the downstream. The latter second EOF mode explains $19.3\%$ of the total variance. We generated the low-pass (periods longer than 24 months), band-pass (periods between 6 and 24 months) and high-pass (periods shorter than 6 months) SST anomaly series and analyzed them by EOF method. The spatial distributions of the first and second EOF modes of all filtered SST anomalies are similar to each other.

  • PDF

Strength Evaluation of High-Strength Concrete Specimens within Reinforcing Bars (철근이 포함된 고강도 콘크리트 공시체의 강도평가)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2018
  • Recently, the safety issue of high-rise concrete buildings damaged by fire, helicopter collisions, earthquakes, and faulty construction has attracted a great deal of interest. It is essential to know the strength of the concrete in order to accurately evaluate its safety for the reinforcement of these buildings. The core drilling method is considered to be the most effective method of assessing the compressive strength of concrete. However, it is very difficult to retrieve the core without the reinforcing bars, because buildings made with high-strength concrete are overcrowded with reinforcing bars. These reinforcing bars are often present in the core specimens, but there are few research studies and no regulations concerning the assessment of the strength of the concrete for high-strength core specimens within reinforcing bars. The purpose of this study is to investigate the effects of the reinforcement arrangement on the strength of the concrete and to present the quantitative values. To complete this research, the compressive strengths of different types of concrete with two different strengths (40 MPa and 60 MPa), two reinforcing bar diameters (10 mm and 12 mm), and 15 types of specimens with or without reinforcement arrangements were prepared and tested. As a result, the strength of the cylinders whose volume is less than or equal to the reinforcement volume of $53.1cm^3$ (about 4 - 13 mm) was predicted to have a low value of up to 60% of the strength of the cylinders without reinforcement.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.