• Title/Summary/Keyword: low-power lossy network (LLN)

Search Result 8, Processing Time 0.031 seconds

A Measurement Study of TCP over RPL in Low-power and Lossy Networks

  • Kim, Hyung-Sin;Im, Heesu;Lee, Myung-Sup;Paek, Jeongyeup;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.647-655
    • /
    • 2015
  • Low-power and lossy networks (LLNs) comprised of thousands of embedded networking devices can be used in a variety of applications, such as smart grid automated metering infrastructures (AMIs) and wireless sensor networks. Connecting these LLNs to the Internet has even greater potential, leading to the emerging concept of the Internet of Things (IoT). With the goal of integrating LLNs into IoT, the IETF has recently standardized RPL and 6LoWPAN to allow the use of IPv6 on LLNs. Although there already exist several studies on the the performance of RPL and embedded IPv6 stack in LLN, performance measurement and characterization of TCP over RPL in multihop LLNs is yet to be studied. In this article, we present a comprehensive experimental study on the performance of TCP over RPL in an embedded IPv6-based LLN running over a 30-node multihop IEEE 802.15.4 testbed network. Our results and findings are aimed at investigating how embedded TCP interoperates with common Linux TCP and underlying RPL (and vice versa), which furthers our understanding of the performance trade-offs when choosing TCP over RPL in IPv6-based LLNs.

Node Balanced CNC Routing Protocol for Low Power and Lossy Networks (저전력 손실 네트워크를 위한 노드 균형 CNC 라우팅 프로토콜)

  • Kim, Tae-Jung;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.123-128
    • /
    • 2019
  • The Internet Engineering Task Force (IETF) proposed IPv6 Routing Protocol for Low-power Lossy Network (RPL) as a routing protocol for Low Power and Lossy Networks (LLN). In RPL networks, only a few parent nodes are connected to many child nodes, which is called Thundering Herd Phenomenon. To solve this problem, it has been considered to limit the maximum number of child nodes connected per node using the CNC (Child Number Count) parameter. However, the problem remains that some parent nodes can be attached with as many as the maximum number of child nodes. How to determine the maximum CNC value is yet another problem. Therefore, in this paper, we propose an algorithm that evenly distributes the number of child nodes connected per node, to solve the Thundering Herd Phenomenon problem. The performance of the proposed algorithm is compared with that of the conventional RPL using CNC. As a result, we showed that the proposed algorithm performs better in terms of load balancing.

A Study on Storing Node Addition and Instance Leveling Using DIS Message in RPL (RPL에서 DIS 메시지를 이용한 Storing 노드 추가 및 Instance 평준화 기법 연구)

  • Bae, Sung-Hyun;Yun, Jeong-Oh
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.590-598
    • /
    • 2018
  • Recently, interest in IoT(Internet of Things) technology, which provides Internet services to objects, is increasing. IoT offers a variety of services in home networks, healthcare, and disaster alerts. IoT with LLN(Low Power & Lossy Networks) feature frequently loses sensor node. RPL, the standard routing protocol of IoT, performs global repair when data loss occurs in a sensor node. However, frequent loss of sensor nodes due to lower sensor nodes causes network performance degradation due to frequent full path reset. In this paper, we propose an additional selection method of the storage mode sensor node to solve the network degradation problem due to the frequent path resetting problem even after selecting the storage mode sensor node, and propose a method of equalizing the total path resetting number of each instance.

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

EC-RPL to Enhance Node Connectivity in Low-Power and Lossy Networks (저전력 손실 네트워크에서 노드 연결성 향상을 위한 EC-RPL)

  • Jeadam, Jung;Seokwon, Hong;Youngsoo, Kim;Seong-eun, Yoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.41-49
    • /
    • 2022
  • The Internet Engineering Task Force (IETF) has standardized RPL (IPv6 Routing Protocol for Low-power Lossy Network) as a routing protocol for Low Power and Lossy Networks (LLNs), a low power loss network environment. RPL creates a route through an Objective Function (OF) suitable for the service required by LLNs and builds a Destination Oriented Directed Acyclic Graph (DODAG). Existing studies check the residual energy of each node and select a parent with the highest residual energy to build a DODAG, but the energy exhaustion of the parent can not avoid the network disconnection of the children nodes. Therefore, this paper proposes EC-RPL (Enhanced Connectivity-RPL), in which ta node leaves DODAG in advance when the remaining energy of the node falls below the specified energy threshold. The proposed protocol is implemented in Contiki, an open-source IoT operating system, and its performance is evaluated in Cooja simulator, and the number of control messages is compared using Foren6. Experimental results show that EC-RPL has 6.9% lower latency and 5.8% fewer control messages than the existing RPL, and the packet delivery rate is 1.7% higher.

Entity Authentication Scheme for Secure WEB of Things Applications (안전한 WEB of Things 응용을 위한 개체 인증 기술)

  • Park, Jiye;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.394-400
    • /
    • 2013
  • WoT (Web of Things) was proposed to realize intelligent thing to thing communications using WEB standard technology. It is difficult to adapt security protocols suited for existing Internet communications into WoT directly because WoT includes LLN(Low-power, Lossy Network) and resource constrained sensor devices. Recently, IETF standard group propose to use DTLS protocol for supporting security services in WoT environments. However, DTLS protocol is not an efficient solution for supporting end to end security in WoT since it introduces complex handshaking procedures and high communication overheads. We, therefore, divide WoT environment into two areas- one is DTLS enabled area and the other is an area using lightweight security scheme in order to improve them. Then we propose a mutual authentication scheme and a session key distribution scheme for the second area. The proposed system utilizes a smart device as a mobile gateway and WoT proxy. In the proposed authentication scheme, we modify the ISO 9798 standard to reduce both communication overhead and computing time of cryptographic primitives. In addition, our scheme is able to defend against replay attacks, spoofing attacks, select plaintext/ciphertext attacks, and DoS attacks, etc.

Mutual Authentication and Key Agreement Scheme between Lightweight Devices in Internet of Things (사물 인터넷 환경에서 경량화 장치 간 상호 인증 및 세션키 합의 기술)

  • Park, Jiye;Shin, Saemi;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.707-714
    • /
    • 2013
  • IoT, which can be regarded as an enhanced version of M2M communication technology, was proposed to realize intelligent thing to thing communications by utilizing Internet connectivity. Things in IoT are generally heterogeneous and resource constrained. Also such things are connected with each other over LLN(low power and lossy Network). Confidentiality, mutual authentication and message origin authentication are required to make a secure service in IoT. Security protocols used in traditional IP Networks cannot be directly adopted to resource constrained devices in IoT. Under the respect, a IETF standard group proposes to use lightweight version of DTLS protocol for supporting security services in IoT environments. However, the protocol can not cover up all of very constrained devices. To solve the problem, we propose a scheme which tends to support mutual authentication and session key agreement between devices that contain only a single crypto primitive module such as hash function or cipher function because of resource constrained property. The proposed scheme enhances performance by pre-computing a session key and is able to defend various attacks.

Design of Smart Service based on Reverse-proxy for the Internet of Things (리버스 프록시 기반 IoT 서비스 도메인 설계)

  • Park, Jiye;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • The IoT (Internet of Things) is considered as a core technology to realize interconnected world. At this, companies composing ICT industry and standard organizations make efforts to accelerate it. IETF CoRE(Constrained RESTful Environment) working group standardized CoAP (Constrained Application Protocol) for the constrained device. CoAP has RESTful architecture and CoAP option is provided to use forward-proxy. The forward-proxy is used to translate protocol and perform requests on behalf of the client. However, communication between Internet based client and LLN(Low-power and Lossy Network) based CoAP server architecture has limitations to deploy real IoT service. In this architecture, problems like response delay, URI assignment and DoS attack can be occurred. To solve these problems, we propose the reverse-proxy based system. We consider both of static IoT and mobility IoT environments. Finally, our proposed system is expected to provide efficient IoT service.