• 제목/요약/키워드: low-pollution

검색결과 1,279건 처리시간 0.03초

환경 중 비소의 매체통합 노출평가 및 위해성평가 연구 (Exposure and Risk Assessments of Multimedia of Arsenic in the Environment)

  • 심기태;김동훈;이재우;이채홍;박소연;석광설;김영희
    • 환경영향평가
    • /
    • 제28권2호
    • /
    • pp.152-168
    • /
    • 2019
  • 비소는 암 등의 질병 치료 및 생활용품 등의 원료로 사용되는 등 산업 활동 전반에 걸쳐 다양한 용도로 사용되어 온 원소이다. 그러나 토양 매립 폐기물 처리, 금속 제조 및 화석 연료의 사용 등으로 인해 환경 생태계를 오염시킬 수 있다. 특히 비소는 토양 및 미생물에 의한 자연적 요인과 산업활동과 같은 인위적 요인으로 발생 할 수 있어 환경매체 중에 광범위하게 존재하기 때문에 다른 원소에 비해 인체에 노출될 가능성이 크다. 따라서 본 연구는 기존의 단순농도 평가 및 단일 매체 중심의 오염원 관리의 단점을 극복하기 위해 다경로(흡입, 경구, 접촉 등)/다매체(대기, 수질, 토양 등) 거동 특성을 반영하여 인체 위해성 평가를 수행하였다. 결과적으로 노출경로별 비소가 인체에 가장 많이 노출되는 경로는 경구에 의한 기여도로 57~96 %를 차지했다. 상대적으로 다른 연령군에 비해 영유아에서 높은 노출량을 보였다. 이는 성인에 비해 체중이 적고 체표면적이 커서 유해물질에 더 많이 노출 될 수 있기 때문이다. 기존 연구에서 보고된 바와 같이, 비소는 경구 경로 중 먹는물의 기여도가 대부분의 연령층에서 주요 노출 경로를 보였다. 최종적으로 노출량 평가 결과에 근거하여 발암위해도 및 비발암위해도를 산정하였다. 산정결과 CTE 및 RME에 대한 발암위해도는 2.3E-05~6.7E-05의 범위로 모든 연령 군의 전체 시나리오에서 발암확률 1.0E-04을 초과하지 않았으므로, 발암위해를 무시할만한 수준으로 판단된다. 반면 RME에 대한 발암위해도는 6.4E-05~1.8E-04의 범위로써 영유아 및 미취학아동 군에서 1.3E-04~1.8E-04의 범위로 초과발암확률 1.0E-04을 초과하였다. CTE 및 RME에 대한 비발암위해도 결과는 위해지수가 각각 5.4E-02~1.9E-01, 1.5E-01~6.8E-01의 범위로 모든 연령 군의 전체 시나리오에서 위해지수 1을 초과하지 않았으므로, 비발암 위해성은 낮은 것으로 판단된다.

서울시 남산 신갈나무림 생태계 특성과 변화 연구 (Ecological Characteristics and Changes of Quercus mongolica Community in Namsan (Mt.), Seoul)

  • 한봉호;박석철;김종엽;곽정인
    • 한국조경학회지
    • /
    • 제50권2호
    • /
    • pp.41-63
    • /
    • 2022
  • 본 연구의 목적은 서울시 남산 신갈나무림을 대상으로 과거 조사자료와의 비교·분석을 통해 생태적 특성을 밝히고, 현황 진단 및 생태계 변화 예측을 위한 기초자료를 축적하는데 있다. 연구대상지는 2006년 7월 서울시 생태·경관보전지역으로 지정된 '남산 북사면 신갈나무림'이다. 연구내용은 토양환경 변화(1986~2016) 분석, 현존식생 변화(1978~2016) 분석, 식물군집구조 변화(1994~2016) 분석이다. 식물군집구조 고정조사구는 1994년과 2000년에 설정한 총 8개 고정조사구(400~1,200m2)를 대상으로 하였으며, 분석항목은 상대우점치, 종수 및 개체수, Shannon의 종다양도이다. 남산 토양환경은 산성 토양(pH 4.40)으로 치환성양이온 용량이 낮아 수목 생육에 부정적 영향을 미칠 것으로 예측되었다. 남산의 신갈나무림은 주로 북사면 일대에 분포하며, 현존식생 면적은 49.4%(1978년) → 80.7%(1986년) → 82.4%(2000년) → 88.3%(2005년) → 70.3%(2016년)로 변화하였으며, 2016년에는 2005년과 비교해 세력이 18% 감소하였다. 이러한 변화는 교목층 신갈나무의 생장에 의해 세력이 증가하였다가 2012년 참나무시들음병 확산에 따른 벌채 및 훈증 관리로 그 세력이 크게 감소되었기 때문이다. 식물군집구조 변화 내용은 대부분 참나무시들음병으로 교목층 신갈나무가 훼손되었고, 차대를 형성할 수 있는 잠재식생이 나타나고 있지 않았다. 아교목층은 도시환경 적응 수종인 때죽나무, 팥배나무 등의 세력이 유지 또는 증가하였다. 관목층은 개방된 상층 수관에 의해 종수 및 개체수가 크게 증가하여 군집별 Shannon의 종다양도도 증가하였다. 남산 신갈나무림은 대기오염 및 산성비 등 도시환경의 영향, 참나무시들음병에 의한 신갈나무 단순림의 한계, 외래종의 유입 등 다양한 생태계 변화가 나타나고 있어 지속적인 모니터링을 통한 관리방안 수립이 필요하다.

구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교 (Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.56-65
    • /
    • 2022
  • 구리는 우수한 특성, 특히 높은 전도성과 낮은 저항으로 인해 전기/전자 제조 산업에 널리 사용되는 비철금속 중 하나이다. 이러한 산업의 표면 처리 공정에서는 구리 함량이 높은 폐수가 발생하며, 직간접적으로 수계로 배출된다. 이는 심각한 환경 오염을 일으키고 또한 귀중한 유용금속의 손실을 초래한다. 이러한 문제를 극복하기 위하여, 효율적이고 저렴하며 친환경적인 흡착제를 찾기 위한 목적으로 흡착 분야에서 전 세계적으로 지속적인 연구개발이 진행되고 있다. 이러한 점을 고려하여, 본 연구에서는 위와 같은 폐수로부터 구리 흡착을 위한 바이오 흡착제로서 식물뿌리(Datura 뿌리 분말)의 성능을 합성 흡착제(Tulsion T-42)와 비교하였다. 실험은 흡착제 투여량, 접촉시간, pH, 주입액 농도 등의 변수들을 최적화하기 위하여 회분식으로 수행되었다. 초기구리농도가 100 ppm이고 pH가 4인 주입액에서, 0.2 g Datura 뿌리 분말을 15분간 접촉하였을 때 구리 흡착율은 95%이었으며, 0.1 g Tulsion T-42은 30분간 접촉에서 95%의 흡착율을 나타내었다. 두 흡착제의 흡착 데이터는 Freundlich 등온선과 잘 일치하였으며, 유사 2차 속도식을 따르는 것을 나타내었다. 전체 결과는 본 연구의 바이오 흡착제가 표면처리 공정의 폐액 또는 폐수로부터 금속 회수에 적용될 가능성을 보여주고 있다.

어류양식장 이전 후 저서다모류 군집 변화 (Changes in Benthic Polychaete Community after Fish Farm Relocation in the South Coast of Korea)

  • 박소현;김선영;심보람;박세진;김형철;윤상필
    • 해양환경안전학회지
    • /
    • 제27권7호
    • /
    • pp.943-953
    • /
    • 2021
  • 본 연구에서는 어류가두리양식장 시설의 재배치 이후 기존 양식장 아래 퇴적물의 회복상태를 규명하고자 하였으며, 이를 위하여 양식장 아래 퇴적물과 저서다모류 군집 조사를 수행하였다. 양식장 철거 이전인 2017년 10월에 사전 조사를 수행하였으며, 양식장 철거 이후인 2017년 11월부터 2018년 10월까지는 매달, 이후 2020년 10월까지는 2 ~ 3달 간격으로 조사하였다. 조사 정점은 철거된 양식장 위치에 3개 정점(Farm1 ~ 3)과 양식시설물이 없는 주변 해역에 3개의 대조 정점(Con1 ~ 3)으로 선정하였다. 사전 조사에서 기존 양식장의 총유기탄소(평균 22.67 mg·g-1 dry weight)는 대조 정점(평균 13.68 mg·g-1 dry weight)보다 높았으나, 양식장 철거 이후 점차 감소하여 약 1년 이후에는 통계적으로 유의한 차이를 보이지 않았다(p<0.05). 저서다모류 군집은 여름철 기존 정점에서 무생물 군집이 출현하였으며, 무생물 시기 이후 오염지시종인 Capitella capitata 단일종이 극우점하는 낮은 다양도의 군집으로 천이하였다. 다음해 여름철 무생물 시기 이전까지 종다양도가 증가하고 오염지시종의 비율이 감소하여 저서다모류 군집이 회복되는 경향을 나타내었으며, 이러한 변화는 매년 반복되었다. 연구 지역은 양식장 아래의 지형학적인 특성으로 인하여 매년 무생물 군집이 출현하고 있으나, 조사가 진행될수록 무생물 발생 기간은 짧아지고, 군집이 회복되는 과정은 빠르게 진행되었다. 어류 양식장의 이전 후 기존 양식장 정점의 퇴적물은 생물학적인 회복이 여전히 진행 중이며, 추가적인 모니터링을 통해 회복의 경향을 연구할 필요가 있다.

질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향 (Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources)

  • 김태헌;김석만
    • 한국작물학회지
    • /
    • 제68권4호
    • /
    • pp.276-284
    • /
    • 2023
  • 질소비료 감비시 수량 감소의 요인과 관련 특성 개량 및 유전자탐색을 위한 유전자원을 제시하기 위해 153개 벼유전자원에 대한 수량 및 수량구성요소의 변이를 분석한 결과는 다음과 같다. 1. 공시된 유전자원은 질소비료 시비 수준이 9 kg/10a에서 4.5 kg/10a로 감소하였을 때 수량, 수량구성요소 및 주요농업형질은 유의한 차이를 나타내었으며, 이중 DTH, CL, PL, GYP, NPP 및 NSP는 1.8~17.9% 감소하였고 나머지 TGW, PRG는 2.6~11.2% 증가하였다. 2. 이원분산분석결과 GYP 및 수량구성요소인 NPP, PRG는 질소비료 시비 수준에 따른 유의성을 보였으나 수량 구성요소인 NSP와 TGW는 유의성이 없었다. 3. NN조건에서 NPP는 NSP (-0.44), TGW (-0.49)와 음의 상관관계를 보였고 TGW는 PRG (-0.34)와 음의 상관관계를 나타내었다. 이와는 반대로 GYP는 PRG (0.37)와 NSP (0.38)간에 양의 상관관계를 나타내었다. LN조건에서도 유사한 양상을 나타내었으나 NPP와 PRG (0.32)간에 양의 상관관계가 추가되었다. 4. 질소비료 감비시 수량 감소의 요인을 분석한 결과 LN조건에서 PA1은 NPP, TGW, PRG 가 높은 요인부하량을 보였는데 NPP의 감소는 TGW를 증가시키고 PRG는 감소시켰다. PA2에서는 NSP와 GYP가 높은 요인부하량을 보였고, NSP의 증가가 GYP를 증가시켰다. 5. 질소비료 감비시 NPP가 가장 높고 감소율은 가장 낮은 인디카형 중에서 NPP 또는 NSP가 높은 CHIEM CHANK외 7개 유전자원을 선발하였다. 6. 이 결과를 바탕으로 질소비료 감비시 수량이 감소하는 가장 큰 요인은 NPP와 NSP의 감소였는데 그 결과 수수형 또는 수중형인 질소비료 감비 적응 품종 육성을 통해 수량성을 유지시킬 수 있을 것으로 판단된다. 또한 선발된 CHIEM CHANK 외 7개 유전자원들은 질소비료 감비 적응 관련 특성 개량 및 유전자탐색을 위한 육종소재로서 이용될 수 있을 것이다.

광주시 대기오염물질 배출량 변화추이에 관한 연구 (A study on the air pollutant emission trends in Gwangju)

  • 서광엽;신대윤
    • 환경위생공학
    • /
    • 제24권4호
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사 (Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations)

  • 유근혜;박승식;김영성;신혜정;임철수;반수진;유정아;강현정;서영교;강경식;조미라;정선아;이민희;황태경;강병철;김효선
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가 (Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment)

  • 허승오;손연규;정강호;박찬원;이현행;하상건;김정규
    • 한국토양비료학회지
    • /
    • 제40권5호
    • /
    • pp.383-391
    • /
    • 2007
  • 수계 내 농경지로부터의 비점오염은 토양유실과 밀접한 관련이 있어 토양침식 정도를 산정하는 것은 비점오염 관리의 기초가 될 수 있으며 환경오염 예측모델의 정도 향상에도 도움이 될 것이다. 본 연구는 표준유역단위인 소유역에서 토양연접군에 따라 소유역을 분류하고 소유역별로 토양침식 위험성을 산정해 통합적 수계관리의 방향을 제시하고자 수행하였다. 건설교통부 소유역 분류에서 토양조사가 되어 있는 10개의 소유역을 선정해 토양연접군에 따른 분류를 통해 금강본류 21, 남강 03, 동진천, 가평천 01, 경안천 02 소유역은 편마암 유래토양이 50% 이상을 차지하는 편마암 유래토양 소유역 그룹으로 분류되었고, 금강본류 16, 병성천 01, 대신천, 북천 02, 영상강 본류 08 소유역은 화강암 유래토양 면적이 60% 이상인 화강암 유래토양 소유역 그룹으로 분류되었다. 대상유역의 경지이용 형태는 편마암 유래토양이 주로 분포하고 있는 소유역 그룹에서 화강암 유래토양이 주로 분포하는 소유역보다 산림의 면적비율이 높게 나타났고 밭의 분포면적 비율이 그다지 높지 않은 것을 보여주었다. 또한 토양도 상의 경사도 분포는 편마암 유래토양이 주로 있는 소유역에서는 산림면적이 많은 관계로 경사 60% 이상인 E와 F slope이 많았고 화강암 유래토양이 주로 분포하는 소유역에서는 대부분의 유역이 경사도에 따라 고르게 분포하는 경향이었다. 각각의 소유역별 토양유실량 산정에 따른 면적별 분포는 산림이 포함된 관계로 편마암이나 화강암 유래토양 대부분에서 A나 B 등급이 많았으나 전체적으로는 편마암 유래토양이 주가 되는 소유역은 B와 C 등급이 많이 분포하고 있었으며, 화강암 유래토양이 주가 되는 소유역에서는 영산강 08을 제외하면 A와 B 등급에 많이 분포하고 있었다. 산림을 제외하는 경우에는 전체적으로 토양유실 등급의 면적분포가 A 등급이 많아졌고 편마암 유래토양 소유역에서 상대적으로 G 등급의 면적분포가 상승하고 등급별 분포가 고르게 되었다. 소유역에서 경지이용형태별 토양유실량은 논이 가장 작은 값을 보였고, 다음이 산림이었으며 제일 큰 토양유실량을 보인 것은 밭이었다. 토양유실량 산정에 따른 토양연접군별 소유역단위 특성을 살펴보면 송산지곡 연접군으로 분류할 수 있는 편마암 유래토양이 주로 분포하고 있는 소유역들의 연간 평균 토양유실량은 $7.66ton\;ha^{-1}\;yr^{-1}$이었고, 삼각상주 연접군으로 분류되는 금강본류 16, 병성천 01, 대신천, 북천 02 소유역의 평균 토양유실량은 $5.55ton\;ha^{-1}\;yr^{-1}$이었다. 송정백산 연접군으로 분류할 수 있는 영산강 08 소유역의 토양유실량은 $9.6ton\;ha^{-1}\;yr^{-1}$ 이었으나 이 연접 소유역군은 다른 소유역군들처럼 더 많은 분류가 있어야 평균 토양유실량을 산정할 수 있을 것으로 여겨진다. 이런 결과로 보아 토양연접군에 따른 소유역의 분류와 유역그룹별 토양유실량을 산정하면 토양연접군별 소유역그룹의 비점오염 기여도를 파악할 수 있을 것으로 보이며, 이에 따라 다양한 수문 환경 모형들의 적용성을 확대시켜 수계 내 수질 관리의 효율성을 향상시킬 수 있을 것이다.

운주사 석조문화재의 보존상태와 보존방안에 대한 연구 (A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea)

  • 김사덕;이찬희;최석원;신은정
    • 헤리티지:역사와 과학
    • /
    • 제37권
    • /
    • pp.285-307
    • /
    • 2004
  • 이 연구에서는 전남 화순군에 위치한 운주사의 석조문화재를 중심으로 암석의 풍화대 형성과 풍화의 진행에 따른 암석학적 특성과 지화학적 특성을 종합 검토하였다. 이 결과를 중심으로 석조물을 이루는 암석의 기계적, 화학적, 광물학적 및 물리적 풍화에 영향을 미치는 풍화요소를 규명하였고, 이들을 정량화하여 석조문화재의 보존방안 강구를 위한 기초자료로 활용하고자 한다. 이 연구를 위하여 야외 정밀조사 및 총 18개의 시료(화산력 응회암 7점, 화산회 응회암 4점, 화강암류 4점, 화강편마암 3점)에 대한 전암분석과 암석의 특성 및 광물감정을 실시하였다. 또한 각각의 석조물에 대한 훼손현황을 반정량적으로 기재하였다. 운주사 일대의 지질을 이루는 암석은 화산력 응회암이며 대체로 N30-40W의 주향과 10~20NE의 경사를 갖고 있다. 이 화산력 응회암은 운주사를 중심으로 매우 넓게 분포하고 있으며 운주사 경내에 분포하는 석조물은 모두 화산력 응회암으로 조형되어 있다. 현재 운주 사 경내의 석조물들은 대부분 심한 균열의 발달과 함께 구조적 불균형을 이루고 있으며, 생물학적 오염 및 암석의 풍화가 상당히 진행되어 각력이 탈락하고 광물의 입상분해가 발생하는 등 풍화와 훼손양상이 아주 심각하다. 또한 석조물 곳곳의 철편과 시멘트 몰탈은 산화되어 적갈색의 침전물과 회백색의 침전물을 형성하고 있다. 이들 석조물에 대해 육안 훼손정도를 기재한 결과 대부분의 석조물들이 MD(moderate damage)에서 SD(severe damage) 등급의 훼손정도를 보이고 있다. 각 암석의 X선 회절분석 결과, 대부분의 시료들은 석영, 정장석, 사장석, 방해석 및 자철석 등의 광물로 구성되어 있다. 현미경하에서는 석영과 장석류가 심하게 변질되었으며, 타형의 결정형을 보이는 흑운모는 풍화되어 이차 풍화광물인 녹니석으로 변질되어 있다. 또한 응회암 곳곳의 열극대에 적갈색의 철분 침전물이 관찰되는 것으로 보아 암석의 내부까지 풍화가 진행되고 있음을 알 수 있다. 연구지역의 석조물을 이루는 응회암류는 Subalkaline, Peraluminous의 영역에 도시되며, 시료의 $SiO_2$(wt.%) 범위는 화산력 응회암이 70.08~73.69, 화산회 응회암은 70.26~78.42 의 범위를 보이고 있다. 또한 주성분원소에 대한 화학적풍화지수(CIA)와 풍화잠재지수(WPI) 계산치에서 CIA의 범위는 화산력 응회암은 55.05~60.75, 화산회 응회암은 52.10~58.70, 화강암은 49.49~51.06 화강편마암은 53.25~67.14의 범위를 보이며 이들은 편마암류와 응회암류에서 큰 값을 갖는다. WPI는 응회암류와 편마암류의 시료에서 0선 이하에 있거나 0선에 근접되어 도시되는 것으로 보아 상위 CIA에서와 같이, 이들 응회암류와 편마암류가 화학적인 풍화 작용을 쉽게 받고 있음을 시사한다. 암석의 분말시료와 석조물의 피복시료를 채취하여 전자현미경(SEM)으로 관찰한 결과 암석의 이차적인 풍화산물인 스멕타이트, 불석군의 점토광물이 관찰된다. 그리고 암석의 생물학적 풍화 요소인 하등식물의 균사류 및 지의류의 모근과 포자가 함께 관찰된다. 이는 암석의 내부까지 생물체가 압력을 가하고 있어 석조물의 기계적 풍화작용을 가중시키고 있으며, 이와 함께 석조물 내에 점토광물화가 상당히 진행된 것으로 판단된다. 암석의 풍화가 상당히 진행되어 비, 바람, 수목, 지반 등 자연환경 의해 훼손이 가속화 되고 있는 상태이다. 이에 대한 방안으로 1차 수목 제거 등 주변 환경정비와 배수로 설치 등 물 침투 방지에 대한 지반환경 조성이 필요하고, 2차 지의류 제거 등 생물학적 처리와 합성수지를 사용한 균열부분 접착복원과 암석 재질을 강하게 하는 경화 및 발수처리를 실시한다. 그리고 풍화의 원인인 바람, 햇빛, 비 등을 차단시킬 수 있고 주변경관과 어울리는 보호시설을 건립하여 보존하는 것이 좋을 것으로 판단된다.