• Title/Summary/Keyword: low-level controller

Search Result 189, Processing Time 0.024 seconds

Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment (자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발)

  • Kwak, Jisub;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

Comparison of DTC between two-level and three-level inverters for LV propulsion electric motor in ship (선박 추진용 저압 전동기에 대한 2레벨 및 3레벨 인버터의 직접토크제어 비교)

  • Ki-Tak RYU;Jong-Phil KIM;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • In compliance with environmental regulations at sea and the introduction of unmanned autonomous ships, electric propulsion ships are garnering significant attention. Induction machines used as propulsion electric motor (PEM) have maintenance advantages, but speed control is very complicated and difficult. One of the most commonly used techniques for speed control is DTC (direct torque control). DTC is simple in the reference frame transformation and the stator flux calculation. Meanwhile, two-level and three-level voltage source inverters (VSI) are predominantly used. The three-level VSI has more flexibility in voltage space vector selection compared to the two-level VSI. In this paper, speed is controlled using the DTC method based on the specifications of the PEM. The speed controller employs a PI controller with anti-windup functionality. In addition, the characteristics of the two-level VSI and three-level VSI are compared under identical conditions. It was confirmed through simulation that proper control of speed and torque has been achieved. In particular, the torque ripple was small and control was possible with a low DC voltage at low speed in the three-level VSI. The study confirmed that the application of DTC, using a three-level VSI, contributes to enhancing the system's response performance.

Development of a Sensorless Deep Well Pump Multi-function Controller using Current Detection Method (전류검출 방식의 심정 펌프 센서리스형 다기능 컨트롤러 개발)

  • Lee, In-Jae;Basnet, Barun;Chun, Hyun-Jun;Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1149-1154
    • /
    • 2017
  • In this paper, we propose a sensorless multi-function controller applicable for deep well water pumps using current detection method. The proposed system overcomes various drawbacks of existing sensored system and additional features like Over current protection function due to overload, Under current protection function for idling at low water level and Relay function for starting single phase motors and acts as a level indicator to detect water lever in real time by the current detection method. A prototype of the multi-function controller system is designed and all of its functions are tested in the laboratory. The application of the proposed controller ensures reduction in the power consumption and maintenance cost in the facilities like water and septic tanks, drainage and waste water system, oil and chemical tanks where deep well pumps are used.

A Study on the Level Control in the Steam Generator of a Nuclear Power Plant by using Model Predictive Controller (MPC를 이용한 원전 증기발생기의 수위제어에 관한 기초연구)

  • Son, Duk-Hyun;Lee, Chang-Goo;Han, Jin-Wook;Han, Hu-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2495-2497
    • /
    • 2000
  • Level control in the steam generator of a nuclear power plant is important process. But, the low power operation of nuclear power plant causes nonlinear characteristics and non minimum phase characteristics (swell and shrink), change of delay. So, we can't lead good results with conventional PID controller. Particularly, the design of controller with constraints is necessary. This paper introduces MPC(Model Predictive Control) with constraints and designs a good performance MPC controller in spite of the input constraints and nonlinear characteristics, non-minimum phase characteristics

  • PDF

A Simple Current Controller for Three-Phase PWM Inverters Using Three-Level Comparators (3레벨 비교기를 이용한 간단한 전류제어기)

  • Moon, Hyoung-Soo;Han, Woo-Yang;Lee, Chang-Goo;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.274-276
    • /
    • 2001
  • A simple current controller for three-phase PWM power inverters using 3-level comparator is presented. All voltage vectors are accurately selected in order to minimize the current error using two three-level comparators and ${\alpha}-{\beta}$ current reference frame. The proposed algorithm have fast response and low current errors. This current controller is improved synchronization problem and increased the voltage utilization value. Usefulness of propose method are verified on the simulation result using Matlab/Simulink.

  • PDF

Current Decoupling Control for the Three-level PWM Rectifier with a Low Switching Frequency

  • Yuan, Qing-Qing;Xia, Kun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.280-287
    • /
    • 2015
  • Three-level PWM rectifiers applied in medium voltage applications usually operate at low switching frequency to keep the dynamic losses under permitted level. However, low switching frequency brings a heavy cross-coupling between the current components $i_d$ and $i_q$ with a poor dynamic system performance and a harmonic distortion in the grid-connecting current. To overcome these problems, a mathematical model based on complex variables of the three-level voltage source PWM rectifier is firstly established, and the reasons of above issues resulted from low switching frequency have been analyzed using modern control theory. Then, a novel control strategy suitable for the current decoupling control based on the complex variables for $i_d$ and $i_q$ is designed here. The comparisons between this kind of control strategy and the normal PI method have been carried out. MATLAB and experimental results are given in detail.

Controller with Voltage-Compensated Driver for Lighting Passive Matrix Organic Light Emitting Diodes Panels

  • Juan, Chang Jung;Tsai, Ming Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.673-675
    • /
    • 2004
  • This study proposes controller with voltage-compensated drivers for producing gray-scaled pictures on passive matrix organic light emitting diodes (PMOLEDs) panels. The controller includes voltage type drivers so the output impedance of the driver is far less than that of the current-type driver. Its low output impedance provides better electron-optical properties than those of traditional current drivers. A free running clock and a group of counters are applied to the gray-scaled function so that phase lock loop (PLL) circuit can be reduced in the controller. A pre-charge function is used to enhance performance of the luminance of an active OLED pixel. As a result, distribution of the low gray level portion is achieved linear relationship with input data. In this work, the digital part of the proposed controller is implemented using FPGA chips, and analog parts are combined with a digital-analog converter (DAC) and analog switches. A still image is displayed on a $48^{\ast}64$ PMOLEDs panel to assess the luminance performance fir the controller. Based on its cost requirement and luminance performance, the controller is qualified to join the market for driving PMOLEDs panels.

  • PDF

생산공장용 무궤도 무인운반차 개발

  • 한석균;김용일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper presents a full-digital low-level controller for a robotic material transfer system which has been developed for a computer-integrated manufacturing model plant. Compared to conventional analog or hybrid type controllers in current industrial environments, this controller system has some advantages such as strong noise-immunity, easy control algorithm implementation, etc The servo-controller consists of two modules, a position controller and a DC servo motor driver. The position controller operates position feedback routines by receiving position encoder data and sending control outputs to the driver. The position controller is implemented in a full-digital way using a recently introduced microcontroller. The DC servomotor driver controls speeds and torques. The driver consists of a micro-controller and insulated-gate-bipolar-transistors (IGBT). The micro-controller provides control signals, and the IGBT's amplifies the control signals and sends them to the motor.

Development of an automatic steam generator level control logic at low power (저 출력시 증기발생기 수위의 자동제어논리 개발)

  • Han, Jae-Bok;Jung, Si-Chae;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.601-604
    • /
    • 1996
  • It is well known that steam generator water level control at low power operation has many difficulties in a PWR (pressurized water reactor) nuclear power plant. The reverse process responses known as shrink and swell effects make it difficult to control the steam generator water level at low power. A new automatic control logic to remove the reverse process responses is proposed in this paper. It is implemented in PLC (programmable logic controller) and evaluated by using test equipment in Korea Atomic Energy Research Institute. The simulation test shows that the performance requirements is met at low power (below 15%). The water level control by new control logic is stabilized within 1% fluctuation from setpoint, while the water level by YGN 3 and 4 control logic is unstable with the periodic fluctuation of 25% magnitude at 5% power.

  • PDF

Design of a robot controller using realtime-multiasking OS (실시간 다중처리 운영체제를 이용한 로보트 제어기의 설계)

  • 최성락;정광조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.654-659
    • /
    • 1993
  • In this paper, a robot controller that has a real time-multitasking OS (Operating System) is developed. It can do given jobs in realtime, so its effectiveness is increased. The controller has several CPU boards, and it is needed to communicate among these boards. For that reason, it is adopted VME bus system and VMEexec OS that can process multiprocess in realtime. Multiprocess includes robot language edit process, vision process, low level motion control process, and teach process in higher layer. And dynamics, kinematics, and inverse kinematics that require realtime calculation are included in lower layer.

  • PDF