• Title/Summary/Keyword: low-flow

Search Result 6,309, Processing Time 0.039 seconds

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Optimization of Protocol for Injection of Iodinated Contrast Medium in Pediatric Thoracic CT Examination (소아 흉부 CT검사에서 조영제 주입에 관한 프로토콜의 최적화)

  • Kim, Yung-Kyoon;Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.879-887
    • /
    • 2019
  • The purpose of this study is to establish a physiological injection protocol according to body weight, in order to minimize amount of contrast medium and optimize contrast enhancement in pediatric patients performing thoracic CT examinations. The 80 pediatric patients under the age of 10 were studied. Intravenous contrast material containing 300 mgI/ml was used. The group A injected with a capacity of 1.5 times its weight, and groups B, C and D added 5 to 15 ml of normal saline with a 10% decrease in each. The physiologic model which can be calculated by weight about amount of injection of contrast medium and normal saline, flow rate and delay time were applied. To assess image quality, measured average HU value and SNR of superior vena cava, pulmonary artery, ascending and descending aorta, right and left atrium, right and left ventricle. CT numbers of subclavian vein and superior vena cava were compared to identify the effects of reducing artifacts due to normal saline. Comparing SNR according to the contrast medium injection protocol, significant differences were found in superior vena cava and pulmonary artery, descending aorta, right and left ventricle, and CT numbers showed significant differences in all organs. In particular, B group with a 10% decrease in contrast medium and an additional injection of saline showed a low degree of contrast enhancement in groups with a decrease of more than 20%. In addition, the group injected with normal saline greatly reduced contrast enhancement of subclavian vein and superior vena cava, and the beam hardening artifact by contrast medium was significantly attenuated. In conclusion, the application of physiological protocol for injection of contrast medium in pediatric thoracic CT examinations was able to reduce artifacts by contrast medium, prevent unnecessary use of contrast medium and improve the effect of contrast enhancement.

Determination and Survey of Fluoroquinolones Residue in Chicken Muscle by HPLC with Fluorescence Detector (액체크로마토그래피-형광검출기를 이용한 닭고기 중 플루오로퀴놀론계 항균물질 정량분석 및 잔류조사)

  • 박은정;임지흔;이성모
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2004
  • Ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin in chicken muscle were seperated by liquid extraction and determined with high performance liquid chromatography (HPLC) with fluorescence detector. Analysis was carried out using following conditions; Cl8 column (250${\times}$4.6 mm i.d. 5 ${\mu}{\textrm}{m}$ particle size), mobile phase composed of D.W. (containing 0.4% triethylamine and phospholic acid): methanol : acetonitrile (800:100:100, v/v/v), isocratic pump at a flow rate of 1.0 $m\ell$/min and 50 ${mu}ell$ of injection volume, fluorescence detector with EX278 nm/EM.456 nm. The calibration curves of four fluoroquinolones showed linearity (${\gamma}$$^2$$\geq$0.999) at concenration range of 0.025-0.6 $\mu\textrm{g}$/ml. The recoveries in fortified chicken muscle represented more than 80% with low coefficient of variation (〈10%) for concentration range of four fluoroquinolones. The detection limits for ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were 23.5, 3.4, 3.0 and 2.5 ng/g in chicken muscle, respectively. We also monitored fluoroquinolones residue in muscle of chickens (broiler 1:227, Korean native chicken 219, laying chicken 77) using EEC-4-plate screening and HPLC conformation methods. Ten(broiler 5, Korean native chicken 5) out of the fifteen samples which were positively detected by EEC-plate screening method from 1,523 chicken meat were confirmed with ciprofloxacin and enrofloxacin by HPLC. The ranges of residual concentration were 0-0.12 ppm for ciprofloxacin and 0.01-6.79 ppm for enrofloxacin. In conclusion, our method could be applied effectively to determine four fluoroquinolones residues in chicken meat, and further survey for fluoroquinolones residue in chicken meat are needed for more effective control of fluoroquinolones used in livestock.

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

A Study on the Evaluation of Distribution Stability of Refrigerated Rice Cake Using Natural Antibiotics (천연항균제를 사용한 냉장떡류의 유통 안정성 평가연구)

  • Yoo, Seung Jin;Chin, Jong-eon;Oh, Sung Hoon;Ryu, Min Jung;Hwang, Kwontack
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.244-255
    • /
    • 2018
  • Natural extract in liquid phase was adjusted to 0, 0.25, 0.5, 1, 2, and 4% concentration to check microbial changes and to measure 4, 8, $12^{\circ}C$ for refrigeration temperature. In the case of grapefruit extract, the microbial safety was maintained at all the concentrations at $4^{\circ}C$ storage, but the antimicrobial activity was maintained at $12^{\circ}C$ storage and at $8^{\circ}C$ and 21 days storage. In the case of grape seed extract, only the 4% of the culture at $8^{\circ}C$ satisfied the requirement of safety of food distribution for the last 21 days, and the safety criterion was satisfied only at 4% concentration at $12^{\circ}C$ for 18 days. Complex Scutellaria baicalensis extract showed the total number of microbial cells treated by concentration. It was confirmed that microbial flow safety was maintained at low temperature ($4^{\circ}C$). However, at $8^{\circ}C$ and $12^{\circ}C$, Exceeded the distribution limit. When polylysine was applied to brown rice cake, it showed activity in all groups except $4^{\circ}C$, but these properties were not observed at $8^{\circ}C$ and $12^{\circ}C$. At a concentration of 0.5% or more of chitosan, the growth of the microorganism is suppressed by the 21st day very stably, and a similar tendency is observed at 8 and $12^{\circ}C$, so that it may be an antimicrobial material that inhibits microorganisms. At the first day, the distribution standards for general bacterial counts were exceeded.Ethyl-pyruvate showed that microorganism safety was maintained at $4^{\circ}C$ and 1% concentration, and food safety was stable even at 2 or 4%. Glycine showed very good and stable distribution stability at $4^{\circ}C$. However, at $8^{\circ}C$ and $12^{\circ}C$, the shelf life of 14 days could not be maintained as with the addition of other antimicrobial active substances.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Changes in Aquatic Insect Community Structure in Wonju Stream based on a Comparison of Previous Studies (과거 문헌 비교를 통한 원주천 수서곤충 군집구조 변화)

  • Han, Jung Soo;Choi, Jun Kil;Won, Kyung Ho;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.400-411
    • /
    • 2018
  • This study was a survey of the Wonju stream in Wonju city from May 2015 to September 2016. A total of three sites were selected from the upstream area Gwanseol-dong to the downstream area Hojeo-myeon. Physicochemical analysis, aquatic insect changes, cluster analysis, functional group analysis, rarefaction curve, and statistical analysis were compared between 2004 and 2016. A total of 19 species (38.78%) in 2004 and 22 species (36.67%) in 2016 were analyzed, with the largest number belonging to ephemeroptera. The individual ratio ranged from 27,759.2 (ind. $m^{-2}$, 84.30%) in 2004 to 4,573.2 (ind. $m^{-2}$, 41.64%) in 2016, with the highest number involving diptera. As a result of the community analysis, significant differences were detected in the indices of dominance, diversity, evenness, and richness in 2004 and 2016 (p<0.05). Burrowers of the habitat orientation groups showed the greatest variation with an average of -68.00% (${\pm}2.15$) and the collector-gatherers of the functional feeding groups showed the highest variation of -40.12% (${\pm}1.77$). The rarefaction curve analysis suggested that the species was the poorest in the midstream regions in 2004 and 2016. Physical factors and water quality showed a significant correlation with diversity index, evenness index, and the number of individuals. MDS analysis of the similarity of upstream and downstream regions was high in 2004, and low in 2016. The differences were attributed to physicochemical changes such as increase in flow velocity due to improvement of small dams and changes in bottom structure.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River(Nakdong) (낙동강 8개 보에서 기상수문·기초수질 및 우점조류의 시공간 종적 변동성)

  • Shin, Jae-Ki;Park, Yongeun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.268-286
    • /
    • 2018
  • The eutrophication and algal blooms by harmful cyanobacteria (CyanoHAs) and freshwater redtide (FRT) that severely experiencing in typical regulated weir system of the Nakdong River are one of the most rapidly expanding water quality problems in Korea and worldwide. To compare with the factors of rainfall, hydrology, and dominant algae, this study explored spatiotemporal variability of the major water environmental factors by weekly intervals in eight weir pools of the Nakdong River from January 2013 to July 2017. There was a distinct difference in rainfall distribution between upstream and downstream regions. Outflow discharge using small-scale hydropower generation, overflow and fish-ways accounted for 37.4%, 60.1% and 2.5%, respectively. Excluding the flood season, the outflow was mainly due to the hydropower release through year-round. These have been associated with the drawdown of water level, water exchange rate, and the significant impact on change of dominant algae. The mean concentration (maximum value) of chlorophyll-a was $17.6mg\;m^{-3}$ ($98.2mg\;m^{-3}$) in the SAJ~GAJ and $29.6mg\;m^{-3}$ ($193.6mg\;m^{-3}$) in the DAS~HAA weir pools reaches, respectively. It has increased significantly in the downstream part where the influence of treated wastewater effluents (TWEs) is high. Indeed, very high values (>50 or $>100mg\;m^{-3}$) of chlorophyll-a concentration were observed at low flow rates and water levels. Algal assemblages that caused the blooms of CyanoHAs and FRT were the cyanobacteria Microcystis and the diatom Stephanodiscus populations, respectively. In conclusion, appropriate hydrological management practices in terms of each weir pool may need to be developed.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.