• Title/Summary/Keyword: low-cost sensor

Search Result 939, Processing Time 0.021 seconds

Single-axis Hardware in the Loop Experiment Verification of ADCS for Low Earth Orbit Cube-Satellite

  • Choi, Minkyu;Jang, Jooyoung;Yu, Sunkyoung;Kim, O-Jong;Shim, Hanjoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.195-203
    • /
    • 2017
  • A 2U cube satellite called SNUGLITE has been developed by GNSS Research Laboratory in Seoul National University. Its main mission is to perform actual operation by mounting dual-frequency global positioning system (GPS) receivers. Its scientific mission aims to observe space environments and collect data. It is essential for a cube satellite to control an Earth-oriented attitude for reliable and successful data transmission and reception. To this end, an attitude estimation and control algorithm, Attitude Determination and Control System (ADCS), has been implemented in the on-board computer (OBC) processor in real time. In this paper, the Extended Kalman Filter (EKF) was employed as the attitude estimation algorithm. For the attitude control technique, the Linear Quadratic Gaussian (LQG) was utilized. The algorithm was verified through the processor in the loop simulation (PILS) procedure. To validate the ADCS algorithm in the ground, the experimental verification via a single axis Hardware-in-the-loop simulation (HILS) was used due to the simplicity and cost effectiveness, rather than using the 3-axis HILS verification (Schwartz et al. 2003) with complex air-bearing mechanism design and high cost.

A hardware architecture based on the NCC algorithm for fast disparity estimation in 3D shape measurement systems (고밀도 3D 형상 계측 시스템에서의 고속 시차 추정을 위한 NCC 알고리즘 기반 하드웨어 구조)

  • Bae, Kyeong-Ryeol;Kwon, Soon;Lee, Yong-Hwan;Lee, Jong-Hun;Moon, Byung-In
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-111
    • /
    • 2010
  • This paper proposes an efficient hardware architecture to estimate disparities between 2D images for generating 3D depth images in a stereo vision system. Stereo matching methods are classified into global and local methods. The local matching method uses the cost functions based on pixel windows such as SAD(sum of absolute difference), SSD(sum of squared difference) and NCC(normalized cross correlation). The NCC-based cost function is less susceptible to differences in noise and lighting condition between left and right images than the subtraction-based functions such as SAD and SSD, and for this reason, the NCC is preferred to the other functions. However, software-based implementations are not adequate for the NCC-based real-time stereo matching, due to its numerous complex operations. Therefore, we propose a fast pipelined hardware architecture suitable for real-time operations of the NCC function. By adopting a block-based box-filtering scheme to perform NCC operations in parallel, the proposed architecture improves processing speed compared with the previous researches. In this architecture, it takes almost the same number of cycles to process all the pixels, irrespective of the window size. Also, the simulation results show that its disparity estimation has low error rate.

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.

Development of a Shooting Training System using an Accelerometer (가속도 센서를 이용한 사격 훈련 시스템 개발)

  • Joo, Hyo-Sung;Woo, Min-Jung;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.263-271
    • /
    • 2021
  • Optoelectronic shooting training systems are used in shooting training sites to improve the accuracy of shooting by tracking the trajectories of gun movements. However, optoelectronic-based systems have limitations in terms of cost, complexity of installation, and the risk that electronic targets may be broken. In this study, we developed and verified a shooting training system that measures postural tremors using a low-cost accelerometer. The acceleration sensor module was designed to be attached to the air cylinder of a gun. Postural tremors were evaluated based on amplitude, frequency, and spatial pattern index, which were computed using acceleration data. The postural tremor indices between the accelerometer and optoelectronic-based system were highly correlated (left-right and up-down directions: r = 0.76 and r = 0.70, respectively). We validated the developed shooting training system using an independent two-sample t-test, which identified a significant difference (p < 0.05) in the calculated postural tremor index according to the athlete's shooting score (i.e., best and worst shots).

The Development of Infant Smart Incubator for Home use (가정용 영유아 스마트 인큐베이터 개발)

  • Eum, Sang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1325-1330
    • /
    • 2020
  • New-born babies who require special attention medically are admitted often to incubator. Incubators are well equipped to fulfill take care of infants, but they have to hospital and so expensive. This paper proposes a smart incubator that can solve the problem of convenience and cost aspect of these incubators. Developed incubator enables near-field monitoring using Arduino Uno as the main control device and Bluetooth communication. The environment in the incubator measures temperature and humidity using a DHT22 sensor and the sound using a P5510 microphone. If the temperature and humidity data set by the user are lower or higher than the reference value, it is designed to operate the heating pad using the controller or turn on the fan to allow air circulation. The measured values in the incubator are displayed in real time on the user's smartphone monitoring screen and are programmed using app inventor. Developed incubators can help take care of infants at low cost in the home.

Functions and Driving Mechanisms for Face Robot Buddy (얼굴로봇 Buddy의 기능 및 구동 메커니즘)

  • Oh, Kyung-Geune;Jang, Myong-Soo;Kim, Seung-Jong;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • The development of a face robot basically targets very natural human-robot interaction (HRI), especially emotional interaction. So does a face robot introduced in this paper, named Buddy. Since Buddy was developed for a mobile service robot, it doesn't have a living-being like face such as human's or animal's, but a typically robot-like face with hard skin, which maybe suitable for mass production. Besides, its structure and mechanism should be simple and its production cost also should be low enough. This paper introduces the mechanisms and functions of mobile face robot named Buddy which can take on natural and precise facial expressions and make dynamic gestures driven by one laptop PC. Buddy also can perform lip-sync, eye-contact, face-tracking for lifelike interaction. By adopting a customized emotional reaction decision model, Buddy can create own personality, emotion and motive using various sensor data input. Based on this model, Buddy can interact probably with users and perform real-time learning using personality factors. The interaction performance of Buddy is successfully demonstrated by experiments and simulations.

  • PDF

Development and Application of Three-axis Motion Rate Table for Efficient Calibration of Accelerometer and Gyroscope (효율적인 각/가속도 센서 오차 보상을 위한 3 축 각도 측정 장치의 개발 및 활용)

  • Kwak, Hwan-Joo;Hwang, Jung-Moon;Kim, Jung-Han;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.632-637
    • /
    • 2012
  • This paper introduces a simple and efficient calibration method for three-axis accelerometers and three-axis gyroscopes using three-axis motion rate table. Usually, the performance of low cost MEMS-based inertial sensors is affected by scale and bias errors significantly. The calibration of these errors is a bothersome problem, but the previous calibration methods cannot propose simple and efficient method to calibrate the errors of three-axis inertial sensors. This paper introduces a new simple and efficient method for the calibration of accelerometer and gyroscope. By using a three-axis motion rate table, this method can calibrate the accelerometer and gyroscope simultaneously and simply. Experimental results confirm the performance of the proposed method.

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

UbiFOS: A Small Real-Time Operating System for Embedded Systems

  • Ahn, Hee-Joong;Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Kim, Joo-Man;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.259-269
    • /
    • 2007
  • The ubiquitous flexible operating system (UbiFOS) is a real-time operating system designed for cost-conscious, low-power, small to medium-sized embedded systems such as cellular phones, MP3 players, and wearable computers. It offers efficient real-time operating system services like multi-task scheduling, memory management, inter-task communication and synchronization, and timers while keeping the kernel size to just a few to tens of kilobytes. For flexibility, UbiFOS uses various task scheduling policies such as cyclic time-slice (round-robin), priority-based preemption with round-robin, priority-based preemptive, and bitmap. When there are less than 64 tasks, bitmap scheduling is the best policy. The scheduling overhead is under 9 ${\mu}s$ on the ARM926EJ processor. UbiFOS also provides the flexibility for user to select from several inter-task communication techniques according to their applications. We ported UbiFOS on the ARM9-based DVD player (20 kB), the Calm16-based MP3 player (under 7 kB), and the ATmega128-based ubiquitous sensor node (under 6 kB). Also, we adopted the dynamic power management (DPM) scheme. Comparative experimental results show that UbiFOS could save energy up to 30% using DPM.

  • PDF

Fabrication of Monolithic Spectrometer Module Based on Planar Optical Waveguide Platform using UV Imprint Lithography (UV 임프린트 공정을 이용한 평판형 광도파로 기반의 집적형 분광 모듈 제작)

  • Oh, Seung hun;Jeong, Myung yung;Kim, Hwan gi;Choi, Hyun young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.73-77
    • /
    • 2015
  • This paper presents integrated polymeric spectrometer module which offers compact size, easily-fabricated structure and low cost. The proposed spectrometer module includes the nano diffraction grating with non-uniform pitch and planar optical waveguide with concave mirror to be fabricated by UV imprint lithography. To increase the reflection efficiency, we designed the nano diffraction grating with triangular profiles. The polymeric planar spectrometer includes a spectral bandwidth of 700 nm, resolution of 10 nm and precision below 5 nm. This polymeric planar spectrometer is well-suited for sensor system.