• 제목/요약/키워드: low-carbon cement

검색결과 84건 처리시간 0.027초

저온 플라즈마 공정을 이용한 시멘트 보강용 탄소 섬유의 표면개질 (Surface Modification of Cement-Reinforcing Carbon Fibers by Low Temperature Plasma Process)

  • 조동련;김훈
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.361-365
    • /
    • 2005
  • $O_2$, $H_2O$, acrylic acid, diaminocyclohexane 등의 저온 플라즈마를 이용하여 시멘트 보강용 탄소 섬유 표면을 친수성으로 개질한 다음, 이에 대한 효과를 살펴보았다. 물과의 접촉각이 $75{\sim}80^{\circ}$ 정도로 소수성이던 표면이 친수성으로 변하여 접촉각이 $10^{\circ}$ 이하로까지 낮아졌으며, 이에 따라 흡습성 및 수용액에서 분산성이 크게 향상되었다. 또한, 섬유표면의 제타 포텐셜이 변하여 시멘트와 정전기적 인력이 향상됨으로써 시멘트의 결착도 향상과 함께 시멘트와의 결합이 57~124%까지 향상되었다.

이산화탄소 분위기에서 칼슘실리케이트와 칼슘설포알루미네이트 혼합시멘트의 광물 및 압축강도 특성 (Mineral and Compressive Strength Characteristics of Calcium Silicate and Calcium Sulfoaluminate Mixed Cement in Carbon Dioxide Atmosphere)

  • 이대근;이선목;박정준;문기연;조계홍;조진상
    • 자원리싸이클링
    • /
    • 제32권6호
    • /
    • pp.10-17
    • /
    • 2023
  • 칼슘실리케이트 시멘트(Calcium silicate cement, CSC)는 친환경 저탄소 시멘트로써 최근에 많은 연구가 진행되고 있다. 하지만 이산화탄소 반응 활성화와 시료 handling을 위하여 사전경화 단계를 진행하여야하는 어려움이 있다. 본 연구에서는 CSC에 칼슘설포아루미네이트(Calcium sulfoaluminate, CSA) 속경시멘트를 혼합하여 초기강도 발현으로 사전경화 없이 사용할 수 있는 CSC의 확대적용 가능성을 살펴보고자 하였다. 이를 위하여 이산화탄소 분위기에서 CSC 와 CSA 속경성 시멘트 혼합비율 변화에 따른 압축강도와 Q-XRD 광물특성 함량 변화를 측정하였다. 압축강도 측정결과, CSC 50% 조건에서 3일과 7일 압축강도가 각 각 14.18MPa과 22.98MPa로 1종시멘트 KS규격을 만족하였다. 광물특성 분석을 통하여 이산화탄소 반응생성물인 calcite 광물이 증가하여 강도발현에 기여했음을 알 수 있었다. 7일 경과 후에도 수화광물인 dicalcium silicate 및 yeelimite광물뿐 아니라, 이산화탄소와 반응하지 않은 rankiniten 및 pseudowollastonite 광물이 다량 관찰되어 7일이후의 강도발현 가능성을 확인하였다.

저탄소 그린콘크리트의 내구 특성 (Durability Properties of Low Carbon Green Concrete)

  • 조일호;성찬용
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.11-17
    • /
    • 2013
  • This study was performed to evaluate the chlorine ion penetration resistance, chemical resistance and freezing and thawing resistance used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furance slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performance of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for offshore structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for offshore structure materials.

pH Swing법을 활용한 이산화탄소 반응경화형 시멘트 경화체의 CO2 고정화 성능 및 기계적 물성 개선 (Improving the CO2 Sequestration Capability and Mechanical Properties of CO2 Reactive Cement Paste Using pH Swing Method)

  • 조성민;김경률;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.115-116
    • /
    • 2023
  • This study aims to investigate and improve the carbon dioxide sequestration capability and the mechanical properties of non-hydraulic low calcium silicate cement especially designed for CO2 reaction and ordinary Portland cement subjected to the carbonation curing facilitating pH swing method. Nitric acid (HNO3) was utilized as an liquid for the mixing of cement paste to enhance the initial dissolution of Ca ions from the cements by promoting low pH environment and prevent the direct precipitation of Ca with the anion, owing to the high solubility of Ca(NO3)2 in water. The results presented that the higher the concentration of HNO3, the higher the compressive strength and CO2 sequestration (until 0.1 M). Ca dissolution caused by the harsh acid attack onto the anhydrous cement particle lead to the higher carbonation reaction degree, forming abundant CaCO3 crystals after the reaction. However, cement paste mixed with excessively high concentration of HNO3 presented deterioration due to the too harsh pH environment and abundant NO3- ions which are known to retard the reaction of cement.

  • PDF

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

하이브리드 섬유 보강 시멘트 복합체의 인장 특성에 관한 연구 (A Study on Tension Properties on Hybrid Fiber Reinforced Cement-Based Composit)

  • 안영태;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.340-343
    • /
    • 2004
  • The cement-based composites have been used for construction industry because of their economy, suitability for architecture and structure function, fire resistance, low fee of repair, easiness for acquisition. but the limited strain capacity of these makes them tension-weak, brittle, and considerable notch-sensitive. As one of solution, FRC(fiber reinforced concrete) have been investigated for regulating weakness of the cement-based composites. In these day different fiber types are proposed for better performance such as HFRC(hybrid fiber reinforced concrete). This study shows experimental results to search the ultimate strength, the ultimate mean strain, and the tension toughness of HFRC. The tension toughness is proportional to the amount of steel fiber and carbon fiber. In this experimental program we kept the total of steel fiber and carbon fiber as $1.0\%,\;1.5\%$, respectively.

  • PDF

Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement

  • Kean Thai Chhun;Chan-Young Yune
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.261-269
    • /
    • 2023
  • In this study, the compressive strength of cement stabilized soil was predicted using the electrical resistivity measurement. The effects of the water to cement (w/c) ratio and recovered Carbon Black (rCB) contents were examined. A series of electrical resistivity and compressive strength tests were conducted on two types of stabilized soil after 28 days of curing. Multiple nonlinear regression (MNLR) analysis was used to evaluate the relationship between the compressive strength and the electrical resistivity in terms of the rCB, Cu (uniformity coefficient), and w/c ratio. The results showed that the w/c ratio and Cu have a strong influence on the compressive strength and electrical resistivity of the cement stabilized soil compared to the rCB content. The use of a small amount of rCB led to a decrease in the void space in the specimen and was attributed to the increase strength and decrease electrical resistivity. A high w/c ratio also induced a low electrical resistivity and compressive strength, whereas 3% rCB in the cemented soil provided the optimum strength for all w/c ratios. Finally, a prediction equation for the compressive strength using the electrical resistivity measurement was suggested based on its reliability, time effectiveness, non-destructiveness, and cost-effectiveness.

저발열 결합재 및 W/B 변화에 따른 저열콘크리트의 공학적 특성 (Engineering properties of low heat concrete depending On low heat binder and the change in W/B)

  • 곽용진;손호정;김경민;박상준;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.69-70
    • /
    • 2012
  • This paper is to investigate the engineering properties of the concrete incorporating different types of low heat generating binders subjected to various W/B. As expected, it is found that increase of W/B resulted in a decrease of hydration heat and compressive strength. It also showed that the application of high early strength and low carbon type mixture had favorable strength development at early and later age, while hydration heat showed rather higher than existing low heat mixture.

  • PDF

폴리실리콘 슬러지를 사용한 저탄소 무기복합재의 Si/Al별 유동 및 강도특성 (Flowing and Strength Properties of Low Carbon Inorganic Composites Using Polysilicon Sludge by Si/Al Ratio)

  • 문지환;박종필;이윤성;이강필;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.47-48
    • /
    • 2011
  • According to Bali Roadmap, Korea is also included in nations with a duty to reduce greenhouse gas. This study aims to draw proper Si/Al ratio by analyzing flowing and strength properties as the 4-component low carbon inorganic composite to reduce the use of cement and discarded polysilicon sludge. As the result, when Si/Al ratio is 4, the highest strength was found.

  • PDF

LCA CO2 관점에서의 콘크리트 폐석분의 활용방안 (Utilization of Waste Concrete Powder from the Viewpoint of LCA CO2)

  • 송훈;신현욱;추용식;이종규;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.209-210
    • /
    • 2012
  • Cement is an essential material for social infrastructure. Cement production process for cement itself is energy-intensive and requires a large amount of natural resources for fuel and raw materials. This study is to development of recycled cement from waste concrete powder in manufacturing process of recycled aggregate concrete. Recycled cement is low carbon and green growth materials concept for eco friendly construction environment. From the test results, waste concrete powder is same chemical proportion regardless of manufacturing process of recycled aggregate concrete.

  • PDF