• 제목/요약/키워드: low velocity impact energy

검색결과 128건 처리시간 0.025초

Low velocity impact behavior of concrete beam strengthened with CFRP strip

  • Kantar, Erkan;Anil, Ozgur
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Nowadays CFRP (Carbon Fiber Reinforced Polymer) became widely used materials for the strengthening and retrofitting of structures. Many experimental and analytical studies are encountered at literature about strengthening beams by using this kind of materials against static loads and cyclic loads such as earthquake or wind loading for investigating their behavior. But authors did not found any study about strengthening of RC beams by using CFRP against low velocity impact and investigating their behavior. For these reasons an experimental study is conducted on totally ten strengthened RC beams. Impact loading is applied on to specimens by using an impact loading system that is designed by authors. Investigated parameters were concrete compression strength and drop height. Two different sets of specimens with different concrete compression strength tested under the impact loading that are applied by dropping constant weight hammer from five different heights. The acceleration arises from the impact loading is measured against time. The change of velocity, displacement and energy are calculated for all specimens. The failure modes of the specimens with normal and high concrete compression strength are observed under the loading of constant weight impact hammer that are dropped from different heights. Impact behaviors of beams are positively affected from the strengthening with CFRP. Measured accelerations, the number of drops up to failure and dissipated energy are increased. Finite element analysis that are made by using ABAQUS software is used for the simulation of experiments, and model gave compatible results with experiments.

저속충돌조건에서 효과적인 충돌에너지흡수를 위한 알루미늄 크래쉬 박스의 비드형상 효과 (Effect of Bead Shape in Aluminum Crash Box for Effective Impact Energy Absorption Under Low- Velocity Impact Condition)

  • 이찬주;이선봉;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1155-1162
    • /
    • 2012
  • 알루미늄 크래쉬 박스는 저속충돌조건에서 프론트 사이드 멤버를 변형을 방지하기 위한 부품이다. 본 연구에서는 저속충돌조건에서 비드형상이 알루미늄 크래쉬 박스의 충돌성능에 미치는 영향을 분석하였다. Edge concave, surface convex 와 surface concave 타입의 비드형상들에 대한 충돌해석 및 실험을 수행하여 비드가 없는 normal 타입의 알루미늄 크래쉬 박스의 충돌성능과 비교분석하였다. 충돌성능은 저속충돌조건에서 크래쉬 박스의 초기 최대하중 및 충돌에너지 흡수능으로 평가하였다. 이를 검증하기 위해 알루미늄 크래쉬 박스와 결합된 프론트 사이드 멤버에 대해 저속충돌실험 수행하고, 이를 분석하였다. Surface concave 타입의 비드가 삽입된 알루미늄 크래쉬 박스 경우, 프론트 사이드 멤버의 변형을 방지할 수 있음을 확인하였다.

하이브리드 복합재 철도차량 차체 적용 적층판의 저속충격특성 연구 (A Study on the Low Velocity Impact Response of Woven Fabric Composites for the Hybrid Composite Train Bodyshell)

  • 이재헌;정성균;김정석
    • Composites Research
    • /
    • 제18권3호
    • /
    • pp.7-13
    • /
    • 2005
  • 본 논문에서는 하이브리드 복합재 철도차량차체에 적용되는 복합적층판에 대한 저속충격시험을 수행하였다. 이를 위해 2.4J, 2.7J 및 4.2J의 세 가지 충격에너지 조건에서 세 가지의 다른 적층구조를 갖는 적층판에 대한 저속충격시험을 수행하였다. 시험에 적용된 직조된 카본/에폭시 적층판의 크기는 $100mm\times100mm$ 이다. 충격시험 후 충격하중이력, 흡수된 에너지 및 손상면적 등이 각 충격에너지와 적층순서에 따라 고찰되었다. 손상면적은 육안검사와 C-scan을 이용하여 동시에 검사하였다. 시험결과 흡수된 에너지는 $[fill]_8$, 적층판이 가장 높았고 $[fill_2,/warp_2)_s$ 적층판이 가장 낮았다. 또한 손상면적은 $[fill]_8$, 적층판에서 가장 넓은데 이것은 상대적으로 흡수에너지가 높기 때문이다.

복합재료의 저속충격 특성 (Low-velocity Impact Characterization of Laminated Composite Materials)

  • 한지원
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.34-37
    • /
    • 2008
  • The composite materials are widely used in the many applications of industry as well as aerospace field because of their high specific stiffness and strength which benefits the material and provides potential energy savings. However, composite materials also have a low property about external applied impact. In this paper, impact tests were conducted on different sample types(glass, carbon and kevlar composite) to obtain information such as absorbed energy and composite deformation using an instrumented impact test machine (DYNATUP 8250). 3 type samples were compared to experimental results. The data from impact test provided valuable information between the different type samples by wet lay up. This paper shows results of that kevlar composite has larger absorption energy and deformation than others.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구 (A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact)

  • 최영식;박명균;박세만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact

  • Keramat Malekzadeh Fard;Meysam Mahmoudi
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.525-538
    • /
    • 2023
  • This paper focuses on the energy absorption of lattice core sandwich structures of different configurations. The diamond lattice unit cell, which has been extensively investigated for energy absorption applications, is the starting point for this research. The energy absorption behaviour of sandwich structures with an expanded metal sheet as the core is investigated at low-velocity impact loading. Numerical simulations were carried out using ABAQUS/EXPLICIT and the results were thoroughly compared with the experimental results, which indicated desirable accuracy. A parametric analysis, using a Box-Behnken design (BBD), as a method for the design of experiments (DOE), was performed. The samples fabricated in three levels of parameters include 0.081, 0.145, and 0.562 mm2 Cell sizes, and 0, 45, and 90-degree cell orientation, which were investigated. It was observed from experimental data that the angle of cells orientation had the highest degree of influence on the specific energy absorption. The results showed that the angle of cells orientation has been the most influential parameter to increase the peak forces. The results from using the design expert software showed the optimal specific energy absorption and peak force to be 1786 J/kg and 26314.4 N, respectively. The obtained R2 values and normal probability plots indicated a good agreement between the experimental results and those predicted by the model.

유한요소해석을 통한 탄소섬유-연강 적층판의 저속 충격 해석 모델 개발 (Development of Low-Velocity Impact Analysis Model of Carbon-Steel Laminates through Finite Element Analysis)

  • 박병진;이동우;송정일
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.215-220
    • /
    • 2018
  • 본 연구에서는 적층 패턴이 다른 5가지 섬유금속적층판(Fiber Metal Laminates, FMLs)에 대한 유한요소해석을 수행하여 선행 연구로 수행한 낙추충격시험과의 유사성을 검증하였고, 효과적인 저속 충격 해석 모델을 개발하였다. 또한 동일한 두께를 가지는 연강(mild steel)과 에너지흡수율을 비교하여 Carbon-Steel 섬유금속적층판의 내충격성을 확인하였다. Carbon-Steel 섬유금속적층판은 동일한 두께를 가지는 연강에 비하여 우수한 충격흡수율을 보였으며, 모든 적층 패턴에서 96% 이상의 높은 에너지흡수율 갖는 것을 확인하였다. 본 연구에서 제시한 저속 충격 해석 모델은 복합형상 및 자동차 구조체 연구에 효과적으로 적용할 수 있을 것으로 판단된다.

고무보강 폴리머 재료의 저속 충격 해석 (A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact)

  • 구본성;박명균;박세만
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF