• Title/Summary/Keyword: low temperature water species

Search Result 281, Processing Time 0.04 seconds

Succession of Cyanobacterial Species and Taxonomical Characteristics of Dolichospermum spp. (Nostocales, Cyanophyceae) in the Weir Regions of the Nakdong River (낙동강 보 구간에서 남조류의 천이 및 Dolichospermum 속(Nostocales, Cyanophyceae)의 분류학적 고찰)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.503-513
    • /
    • 2018
  • Freshwater cyanobacterial genus Dolichospermum is one of the most commonly spotted types of phytoplankton, whereas a limited number of studies on morphology of Dolichospermum spp. have been performed in South Korea. The purpose of this study is to investigate the succession pattern of cyanobacteria after weir construction, as well as morphological characteristics of Dolichospermum spp. from natural samples collected in the weir regions of Nakdong River. A total of 31 cyanobacterial taxa observed in this study were classified as belonging to 15 genera, 5 families, and 3 orders. Among them, morphological characteristics in the four species were classified into genus Dolichospermum, for most of the planktic former members of the genus Anabaena, were observed through light microscopy. Water bloom frequently occurred in the middle region of Nakdong River, the maximum number of cyanobacterial species appeared in the lower region of Nakdong River. The appearance of order Chrooccocales was only observed during summer when population density of Microcystis aeruginosa reached an annual peak. In contrast, filamentous cyanobacteria was observed throughout the whole year, even if when water temperature was lower than $5^{\circ}C$. It implied that the low-temperature-adapted filamentous cyanobacteria can grow in a range of water temperatures. Coil diameter of D. crassum from natural samples was $75{\sim}140{\mu}m$ ($ave.=91.3{\mu}m$; n = 94), slightly larger than those reported by previous studies. Dolichospemum smithii ($Kom{\grave{a}}rek$) Wacklin et al. 2009, was described for the first time in Nakdong River.

Structure of Epiphytic Diatom Communities at the Banwoul High and Low Wetlands in the Shiwha Constructed Wetland (시화 반월 고습지와 저습지의 갈대 부착규조 군집 구조)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.95-106
    • /
    • 2009
  • The Shihwa constructed wetland was established for the treatment of severely poluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating the structure of epiphytic diatom communities on reed (Phragmites communis) planting area at Banwoul high wetland (3 stations) and low wetland (3 stations) from March to October 2005. The concentration of T-N of inlet stations from the streams were decreased by flowed through the wetland, but the concentration of T-P were increased at outflow part. Epiphytic diatoms on the reed were a total 109 taxa which were composed of 103 species, 5 varieties, 1 unidentified species. The standing crops were rapidly decreasing tendency from spring to autumn but chlorophyll-a concentration were showed a very irregulated changes. Dominant species were 6 taxa which were Achnanthes minutissima in the early investigation, and were changed to the genus Navicula and the genus Nitzschia in the summer. DAIpo were ranged the values of $20.2{\sim}51$, which were mesosaprobic states at the high wetland and ranged the values of $12.4{\sim}52$, which were polysaprobic to mesosaprobic states at the low wetland. TDI were ranged the values of $28.8{\sim}94.5$, which were oligotrophic to eutrophic state at the high wetland and ranged the values of $33.3{\sim}89.7$ which were mesotrophic to eutrophic states at the low wetland. The healthy assessment (DAIpo and TDI) of water ecosystem were showed clean-bad from spring to autumn. These epiphytic diatom communities were determinated by the biological factor such as the growth of reed and the physical factors such as water temperature, light penetration and SS and so on.

Effects of Dietary Energy Level and Feeding Ration on Growth and Body Composition of Nile Tilapia, Oreochromis niloticus (L.)

  • Cho, Sung-Hwoan;Jo, Jae-Yoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.271-273
    • /
    • 2000
  • Recently, possibility of low protein diet with high energy level for improvement of fish production has been proposed in several fish species, especially under restricted feeding rate, fish responded better on high energy diet than low energy diet McGoogan and Gatlin (1999) stressed another benefit of low protein diet with high energy for fish production, in terms of reduction of nitrogen waste from fish metabolism However, others reported no effect of high lipid in feed on performance of fish (Jover et al. 1999). This was probably because that energy availability o requirement for fish varied based on fish species, protein content or quality in feed, rearing water temperature condition and feeding ration. (omitted)

  • PDF

Abundance of Harmful Algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the Coastal Area of South Sea of Korea and Their Effects of Temperature, Salinity, Irradiance and Nutrient on the Growth in Culture (남해안 연안에서 적조생물, Cochlodinium polykikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 조도 및 영양염류에 따른 성장특성)

  • LEE Chang Kyu;KIM Hyung Chul;LEE Sam-Geun;JUNG Chang Su;KIM Hak Gyoon;LIM Wol Ae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.536-544
    • /
    • 2001
  • Three harmful algal bloom species with similar morphology, Cochlodinium polykrikoides, Gyodinium impudicum and Gymodinium catenatum have damaged to aquatic animals or human health by either making massive blooms or intoxication of shellfishes in a food chain. Eco-physiological and hydrodynamic studies on the harmful algae offer useful informations in the understanding their bloom mechanism by giving promising data for the prediction and modelling of harmful algal blooms event. Thus, we studied the abundance of these species in the coastal area of South Sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth for the isolates. The timing for initial appearance of the three species around the coastal area of Namhaedo, Narodo and Wando was between Bate July and late August in 1999 when water temperature ranged from $22.8^{\circ}C\;to\;26.5^{\circ}C$ Vegetative cells of C. polykrikoides and G. impudicum were abundant until late September when water temperature had been dropped to less than $23^{\circ}C$. By contrast, vegetative cell of G. catenatum disappeared before early September, showing shorter period of abundance than the other two species in the South Sea. Both G. impudicum and G. catenatum revealed comparatively low density with a maximal cell density of 3,460 cells/L and 440 cells/L, respectively without making any bloom, while C. polykrikoides made massive blooms with a maximal cell density more than $40\times10^6$cells/L, The three species showed a better growth at the relatively higher water temperature ranging from 22 to $28^{\circ}C$ with their maximal growth rate at $25^{\circ}C$ in culture, which almost corresponded with the water temperature during the outbreak of C. polykrikoides in the coastal area of South Sea. Also, they all showed a relatively higher growth at the salinity from 30 to $35\%$. Specially, G. impudicum showed the euryhalic characteristics among the species, On the other hand, growth rate of G. catenatum decreased sharply with the increase of water temperature at the experimental ranges more than $35\%$. The higher of light intensities showed the better growth rates for the three species, Moreover, C. polykrikoides and G. impudirum continued their exponential growth even at 7,500 lux, the highest level of light intensity in the experiment, Therefore, It is assumed that C. polykrikoides has a physiological capability to adapt and utilize higher irradiance resulting in the higher growth rate without any photo inhibition response at the sea surface where there is usually strong irradiance during its blooming season. Although C. poiykikoides and G. impudicum continued their linear growth with the increase of nitrate ($NO_3^-$) and ammonium ($NH_4^-$) concentrations at less than the $40{\mu}M$, they didn't show any significant differences in growth rates with the increase of nitrate and ammonium concentrations at more than $40{\mu}M$, signifying that the nitrogen critical point for the growth of the two species stands between 13.5 and $40{\mu}M$. Also, even though both of the two species continued their linear growth with the increase of phosphate ($PO_4^{2-}$) concentrations at less than the $4.05{\mu}M$, there were no any significant differences in growth rates with the increase of phosphate concentrations at more than $4.05{\mu}M$, signifying that the phosphate critical point for the growth of the two species stands between 1.35 and $4.05{\mu}M$. On the other hand, C. polykrikoides has made blooms at the oligotrophic environment near Narodo and Namhaedo where the concentration of DIN and DIP are less than 1.2 and $0.3{\mu}M$, respectively. We attributed this phenomenon to its own ecological characteristics of diel vertical migration through which C. polykrikoides could uptake enough nutrients from the deep sea water near bottom during the night time irrespective of the lower nutrient pools in the surface water.

  • PDF

Phytoplankton Community and Surrounding Water Conditions in the Youngsan River Estuary: Weekly Variation in the Saltwater Zone (영산강 하구의 식물플랑크톤 군집 및 수 환경: 해수역의 주별 변동)

  • Sin, Yongsik;Yu, Haengsun
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.191-202
    • /
    • 2018
  • In this study we conducted a weekly monitoring exercise at a fixed station in the saltwater zone during the dry season (Jan-Mar, 2013) and wet season (Jun-Aug, 2013) to understand the fluctuations in phytoplankton communities and environmental factors in the Youngsan River estuary altered by a dike constructed in the coastal area. Phytoplankton communities displayed seasonality; diatoms were dominant during the dry season whereas dinoflagellates were dominant during the wet season. T-test analysis showed that water temperature was significantly different between the seasons whereas freshwater discharge from the dike was not significantly different. This suggests that seasonal variations of phytoplankton are more likely affected by water temperature than freshwater discharge. However, a short-term fluctuation was also observed in response to freshwater discharge; freshwater species appeared during or after the discharge in the dry and wet seasons and blooms of harmful species developed after the discharge. Phytoplankton communities may be affected by changes in physical factors such as turbidity and salinity and nutrient supply resulting from freshwater discharge. Especially, the nutrient supply may directly contribute to the harmful algal blooms (HABs) composed of dinoflagellates which can adapt to low salinity after freshwater discharge.

Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species

  • Kang, Hee Chang;Jeong, Hae Jin;Lim, An Suk;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah;Lee, Sung Yeon;Eom, Se Hee
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.263-275
    • /
    • 2020
  • Water temperature is known to affect the growth and feeding of marine dinoflagellates. Each dinoflagellate species grows well at a certain optimal temperature but dies at very cold and hot temperatures. Thus, changes in water temperatures driven by global warming and extremely high or low temperatures can affect the distribution of dinoflagellates. Yihiella yeosuensis is a mixotrophic dinoflagellate that can feed on only the cryptophyte Teleaulax amphioxeia and the chlorophyte Pyramimonas sp. Furthermore, it grows fast mixotrophically but rarely grows photosynthetically. We explored the direct and indirect effects of water temperature on the growth and ingestion rates of Y. yeosuensis feeding on T. amphioxeia and the growth rates of T. amphioxeia and Pyramimonas sp. under 7 different water temperatures (5-35℃). Both the autotrophic and mixotrophic growth rates of Y. yeosuensis on T. amphioxeia were significantly affected by temperature. Under the mixotrophic and autotrophic conditions, Y. yeosuensis survived at 10-25℃, but died at 5℃ and ≥30℃. The maximum mixotrophic growth rate of Y. yeosuensis on T. amphioxeia (1.16 d-1) was achieved at 25℃, whereas the maximum autotrophic growth rate (0.16 d-1) was achieved at 15℃. The maximum ingestion rate of Y. yeosuensis on T. amphioxeia (0.24 ng C predator-1 d-1) was achieved at 25℃. The cells of T. amphioxeia survived at 10-25℃, but died at 5 and ≥30℃. The cells of Pyramimonas sp. survived at 5-25℃, but died at 30℃. The maximum growth rate of T. amphioxeia (0.72 d-1) and Pyramimonas sp. (0.75 d-1) was achieved at 25℃. The abundance of Y. yeosuensis is expected to be high at 25℃, at which its two prey species have their highest growth rates, whereas Y. yeosuensis is expected to be rare or absent at 5℃ or ≥30℃ at which its two prey species do not survive or grow. Therefore, temperature can directly or indirectly affect the population dynamics and distribution of Y. yeosuensis.

Survival, Hematologic and Histological Changes of File Fish Thamnaconus modestus Adult Exposed to Different Lower Temperature (저수온에 노출된 말쥐치 Thamnaconus modestus의 생존율, 혈액학적 및 조직학적 반응)

  • Kim, Hae Jin;Lee, Hee-Jung;Kim, Won Jin;Shin, Yun Kyung
    • Korean Journal of Ichthyology
    • /
    • v.31 no.4
    • /
    • pp.201-207
    • /
    • 2019
  • Temperature is one of the most important criteria considered in species preference for aquaculture. Acute drop in temperature during winter is a cause of disease and mass mortality in farmed fish. This study was carried out the low water temperature tolerance, oxygen consumption, hematologic and histological responses to use as basic data for the management of fish farming which frequently cause death due to winter water temperature drop. Low-lethal water temperature for 4 days of file fish Thamnaconus modestus (4day-LT50) was 6.97℃ (6.69~7.27℃). Oxygen consumption rate decreased with decreasing water temperature, showing a significant difference between water temperatures. SOD activity increased significantly at 6℃ experimental group than control group (10℃) (p<0.05), but CAT did not show any significant difference between experimental temperatures (p>0.05). Cortisol increased with decreasing experimental water temperature compared to control group. Histological changes in the liver include decreased blood vessels in the blood vessels, proliferation of acid cells, condensation of the nucleus, atrophy of pancreatic exocrine gland cells, and enzyme source granules.

Effects of Environmental Factors on Algal Communities in the Nakdong River (낙동강의 환경요인이 조류군집 구성에 미치는 영향)

  • Yu, Jae Jeong;Lee, Hae Jin;Lee, Kyung-Lak;Lee, In Jeong;Jung, Gang Young;Cheon, Se Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.539-548
    • /
    • 2014
  • This study was carried out to investigate algal community structures and their correlations with environmental factors on five weir areas in the Nakdong River, South Korea. Water qualities, hydrodynamics, meteorological conditions and algal species compositions were observed in studied sites from May 2010 to Dec. 2013. Results showed that average total phosphorus concentration of 2013 was decreased by 52.4% in comparing with that from 2010 to 2011. Chlorophyll.a concentrations were positive significant with water temperature, pH, total phosphorus and total nitrogen, but is not significant with turbidity and suspended solids. Seasonal successions of algae were observed that Stephanodiscus sp. was dominant species with 65.3% of dominant frequency in studied site. Large algal biomass of the low temperature-adapted diatoms were observed during temperature range of $4{\sim}9^{\circ}C$, but large cyanobacterial biomass mainly during high temperature period ranged from $22^{\circ}C$ to $32^{\circ}C$. Microcystis sp. dominated during high water temperature in summer. The yearly correlations of algal biomass with accumulated solar radiations were not significant but seasonal correlations of summer from June to August were significant with correlation coefficient 0.33 (p<0.05). There were not significant correlations between turbidities and algal biomass. Turbidity and suspended solids concentrations were not significant correlation with algal biomass. According to the results, algal communities had strong correlation with water temperature and had partially correlation with solar radiation. For an effective management of algal blooms, water managers should survey with more long-term monitoring of various environmental factors and algal communities.

Effect of Deep Sea Water on Seed Germination, Photoperiod and Temperature on the Growth and Flowering of Buckwheat Species

  • Briatia, Xoxiong;Hong, Soon-Kwan;Sung, In-Je;Chang, Kwang-Jin;Park, Byoung-Jae;Park, Cheol-Ho
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.323-328
    • /
    • 2012
  • This paper describes the potential use of deep sea water to stimulate seed germination in both common and Tartary buckwheat. Treatment of 10% deep sea water at $25^{\circ}C$ would slightly enhance germination of buckwheat seeds compared to non-DSW treatment and other temperature. In this study, the significant effects of photoperiod and temperature on seedling growth were also found in the HL treatment for the number of leaf, plant height, and plant fresh weight and LL treatment for root length and leaf size. Common buckwheat (Suwon No.1) showed higher rate (93%) of flowering plants in the HS and LL (93% of flowering rates) than those revealed in the HS and LS treatment, while the low percentage(67%) of plant flowering plants was shown in the LS treatment. All plants (100%) of a Korean landrace, Ahndong-jaerae showed flowers in the HS and LS treatment. HL and LL treatment status did not occur in the plant's flowering. Any Tartary buckwheat (KW45) plant did not yet flowered when it was 21 days-old.

Susceptibility of rainbow trout Oncorhynchus mykiss and cherry salmon Oncorhynchus masou against Ichthyophthirius multifiliis (무지개송어와 산천어의 백점충에 대한 감수성)

  • Kim, Yi-Cheong;Kim, Jin-Do;Jee, Bo-Young;Jung, Sung-Hee;Seo, Jung-Soo;Park, Sung-Woo
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • This study was performed to natural infection of Ichthyophthirius multifiliis and mortalities of two fish species were compared at 10${^{\circ}C}$ and 17${^{\circ}C}$ after artificial infection with the parasite. Subsequently compared to motality by the artificial infection with the different parasite orgin of host at 17${^{\circ}C}$ using rainbow trout Oncorhynchus mykiss. The prevalence of Ichthyophthirius multifiliis in cherry salmon was higher than that in rainbow trout during the periods of low temperature but no difference in high temperature season. The parasite was not detectable in culturing water and detritus except May that of density has been high. Susceptibility to the parasite was higher in cherry salmon than in rainbow trout at 10${^{\circ}C}$ of water temperature but no difference between two fish species at 17${^{\circ}C}$. When rainbow trout were infected with Ichthyophthirius multifiliis from rainbow trout and cherry salmon at 17${^{\circ}C}$, there was no difference in death of host. These results suggest that cherry salmon have higher susceptibility to Ichthyophthirius multifiliis than rainbow trout at low temperature.