• Title/Summary/Keyword: low temperature storage

Search Result 1,115, Processing Time 0.035 seconds

Thermal Stability of Israeli Carp Actomyosin and Its Protection by Chemical Additives (이스라엘 잉어 Actomyosin의 열안정성과 그 보호)

  • NAM Taek-Jeong;CHOI Yeung-Joon;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.271-279
    • /
    • 1984
  • Effects of temperature and additives on the stability of actomyosin extracted from skeletal muscle of Israeli carp, Cyprinus carpio nudus, were studied by analyzing free SH-group, ATP-sensitivity and Ca-ATPase activity. The used additives were sucrose, sorbitol, Na-glutamate and L-cysteine. Furthermore, the denaturation constant($K_D$), protective effect(${\Delta}E/M$) and the other thermo-dynamic parameters on protein denaturation are systematically discussed. The actomyosin showed $4.12{\sim}4.68 mg/ml$ in protein concentration, $2.63{\sim}2.93\%$ in ribonucleic acid to the protein, $1:2.20{\sim}2.63$ in the binding ratio of myosin and actin, $4.33{\sim}5.26\%$ in fat content, 109.78 in ATP-sonsitivity, $0.159{\sim}0.201\;{\mu}M-Pi/min/mg-protein$ in Ca-ATPase activity and $3.3{\sim}3.4M/10^5$g-protein in free SH-group content. The first-order rate plots were obtained on the decrease of Ca-ATPase activity and ATP-sensitivity with an increase in temperature, while the free SH-group was increased to $60^{\circ}C$ and decreased rapidly above the temperature. The half-life of Ca-ATPase activity on the actomyosin Ca-ATPase was 280 min at $12^{\circ}C$, 125 min at $20^{\circ}C$, 55 min at $30^{\circ}C$ and 13 min at $40^{\circ}C$, and activation energy, activation enthalpy, activation entropy and free energy of the proteins at $20^{\circ}C$ wene 5,395 cal/mole, 4,814 cal/mole, -40.42 e.u. and 17,626 cal/mole, respectively. The protective effect of the additives on the actomyosin Ca-ATPase showed that the most effective material is $3\%$ sorbitol and followed in the order of $8\%$ Na-glutamate, $1\%$ sucrose and $1\%$ L-cysteine. The actomyosin was more stable at $-30^{\circ}C$ than at $0^{\circ}C$ and $-20^{\circ}C$. and when the additives were used in the low temperature storage, $8\%$ Na-glutamate was the most effective. $3\%$ sorbitol, $1\%$ sucrose and $1\%$ L-cysteine was to become lower in the order.

  • PDF

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF

Changes in Abscisic Acid and Gibberellin Levels during Stratification in Panax ginseng Roots (인삼근의 휴면타파과정에 있어서 Abscisic acid 함량 및 Gibberellin 활성의 변화)

  • Choi, Sun-Young;Lee, Kang-Soo;Ryu, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 1989
  • The present study was carried out to get the basic information for clarifying physiological mechanism of breaking dormancy and sprouting in Panax ginseng roots. Changes in Abscisic acid (ABA) content and Gibberellin (GA) activity were investigated in one-year-old root during stratification at 4$^{\circ}C$. 15$^{\circ}C$. and 15$^{\circ}C$ after 60day-treatment at 4$^{\circ}C$. Sprouting rate at 15$^{\circ}C$ was 35% in 30days storage at 4$^{\circ}C$ and 100% in longer than 60days, but there was no sprout in both the constant treatment at 4$^{\circ}C$ or 15$^{\circ}C$ regardless of the treatment period. The longer the period of low temperature treatment. number of days to the first and 50% sprouting was shortened, and number of days to 50% from first sprouting was also shortened. ABA content in the upper part of root(contained bud) was gradually increased at both 4$^{\circ}C$ and 15$^{\circ}C$ as the treatment period was extended. and the degree of increase was higher at 15$^{\circ}C$. In the lower part. it showed a slight increase at 15$^{\circ}C$. while showed little change at 4$^{\circ}C$ throughout the treatment period. In the 15$^{\circ}C$ treatment after 60days at 4$^{\circ}C$, it was greatly increased in the upper part. while rather slightly decreased in the lower part of root. GA activity in the upper part was gradually decreased at both 4$^{\circ}C$ and 15$^{\circ}C$, and the degree of decrease was higher at 15$^{\circ}C$. In the lower part. it was similar tendency to those in the upper part. In the 15$^{\circ}C$ treatment after 60days at 4$^{\circ}C$. it was remarkably increased in both the upper and lower part. The increase was great in the low Rf region, while the decrease appeared relatively in the high Rf region compared to those of 60day-treatment at 4$^{\circ}C$. The above results indicated that the breaking dormancy and sprouting of bud were closely associated with the degree of GA activities in response to temperature condition .during stratification rather than the direct effect associated with the changes in ABA content.

  • PDF

Manufacturing Characteristics and Its Color Change of Chewing Gum coated Various Polyols (당알코올로 코팅한 껌의 제조특성과 색택변화에 관한 연구)

  • Lee, Su Han;Lee, Jong Rok;Kim, Jung Hoan
    • Culinary science and hospitality research
    • /
    • v.21 no.6
    • /
    • pp.303-311
    • /
    • 2015
  • This study was carried out to evaluate the possibility of polyols for coating material of chewing gum. Five polyols xylitol, maltitol, isomalt, erythritol, and sorbitol were compared the coating quality, coating and drying time, and color differences. Maltitol was evaluated to be the best quality for coating the gum, whereas erythritol and sorbitol were not considered for coating materials for gum. These results derived from irregular surface layer and low productivity due to increased coating time. According to changes in color of chewing gum, samples coated maltitol and xylitol and isomalt stored at high temperature. In addition, color difference of sample coated maltitol was calculated 2.88 stored at $80^{\circ}C$ for 1 day, but those of xylitol and maltitol were highly evaluated. Sample coated maltitol in polypropylene bag was stored and measured for 1 month. Changes in color of sample was slightly occurred at below $40^{\circ}C$ and the color difference was not more than 3 at $60^{\circ}C$. Chewing gum coated maltitol as coating material was expected more stable in the quality of color during distribution. Current study was performed to color changes during storage, further study will be proceeded about shelf-life of chewing gum coated polyols.

Development Hybrid Filter System for Applicable on Various Rainfall (다양한 강우사상에 대응 가능한 침투여과형 기술개발)

  • Choi, Jiyeon;Kim, Soonseok;Lee, Soyoung;Nam, Guisook;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.535-541
    • /
    • 2013
  • The urbanization affects significantly on a natural water circulation system by increasing the imperviousness rate. It is also negatively affecting on urban temperature, environmental pollution, water quality, and aqua-ecosystems. The Korea MOE (Ministry of Environment) adapted a new environmental policy in order to reduce the impact of urbanization, which is the Green Stormwater Infrastructure (GSI) program. The GSI can be achieved by protecting conservable green spaces, enlarging more green spaces, and constructing more permeable pavements. The GSI is including many different techniques such as bioretention, rain garden, infiltration trench and so on. Also It is the infrastructures using natural mechanisms of soils, microorganisms, plants and animals on a water circulation system and pollutant reduction. In this research, a multi functional GSI technology with infiltration-filtration mechanisms has been developed and performed lab-scale tests to evaluate the performances about infiltration rate restoration and pollutant reduction. The most of pollutants including metals, organics and particulates were reduced about 50~90% due to water infiltration and storage functions. The clogging was found when the TSS loading rate was reached on $8.3{\sim}9.0kg/m^2$, which value is higher than the values in literatures. It means the new technology can show high performances with low maintenances.

Anatomy and Artificial Seed Propagation in Anti -cancer Plant Orostachys japonicus A. Berger (항암식물 와송의 해부 형태적 관찰과 대량 증식에 의한 인공재배연구)

  • 신동영;이영만;김학진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.146-157
    • /
    • 1994
  • Wasong(Orostachys japonicus A. Berger) has been used as anti-cancer medicinal plants from ancient time. This experiment was conducted to obtain some fundamental informations concerning anatomical study, germination test, soil analysis of indigenious districks, adaptaion of soil for wasong. The leaf of wasong was xerotype with spine, mesophyl chloroplast is dense surrounded vascular bundle, with a many large water storage tissue without chloroplast, and was bifacial stomata leaf type. The stem of wasong was amphicribral vascular bundle, central cylinder was cylinder type and protostele. Root was polarch type, potoxylem of it's was arranged in ring shape of annulation and metaxylem. The structure of flower was cymose, was caylyx of 5 sepals, corolla of 5 petals, roecium of 10 stames, ovules of five, placentation parietal, ovary superior, axile placenta. The optimum temperature for seed germination was $25^{\circ}C$ under light and germination percentage was 22.5%. Dormancy breaking was effective for 6-8 days at 5$^{\circ}C$ and at 100 ppm level of $GA_3$ The soil analysis of wasong local districks, content of available $P_2O_5$, Ca were higer than optimal level of upland and C.E.C., exchangeable k was not significantly different of that, but exchangeable magnesium was very low. The growth of wasong was affected draining regardless soil combination treatment.

  • PDF

Characterization of Bacteria Isolated from Rotted Onions (Allium cepa) (양파 부패병변에서 분리한 세균의 특성)

  • Lee Chan-Jung;Lim Si-Kyu;Kim Byung-Chun;Park Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2005
  • One hundred thirty nine bacteria were isolated from rotten onions collected from main producing districts, Chang-Nyung, Eui-Ryung, and Ham-Yang in Korea. The $18\%$ (25 strains) of bacterial isolates have carboxymethylcellulase (CMCase) activity and the $53\%$ (74 strains) have polygalacturonase (PGase) activity. Thirty one among randomly selected 45 strains of PGase producing bacteria have pathogenicity to onions. The isolates were classified into Pseudomonas sp. (18 strains), Bacillus sp. (11 strains), Yers-inia sp. (7 strains), and others (9 strains) on the basis of FAMEs patterns. Eighteen strains of Pseudomonas sp. were mainly divided into three cluster in the dendrogram and only the two clusters of them showed pathogenicity to onions. CMCase and PGase activities of Pseudomonas sp. weaker than those of Bacillus sp.. However, the pathogenicity of pseudomonas sp. to soften onions was stronger than that of Bacillus sp. Inoculation of $10^{2}$ cfu of Pseudomonas sp. gives rise to softening of onions. Pseudomonas sp. was identified as Pseudomonas gladioli by biochemical and physiological characteristics. P. gladioli is the first reported bacterium as a pathogen of onion in Korea. In low temperature, P. gladioli showed better growth and higher PGase activity than those of Bacillus sp. identified as Bacillus subtilis. And pH 9.0 is optimal pH for PGase activity of B. subtilis while that of P. gladioli is pH $5.0\∼6.0$ which is the acidity of onions. Taken together, P. gladioli may be a main pathogene of onion rot during the cold storage condition.

Effects of Combined Treatments of Lactic Acid Bacteria and Cell Wall Degrading Enzymes on Fermentation and Composition of Italian Ryegrass (Lolium multiflorum Lam.) Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • This experiment was carried out to study the effects of lactic acid bacteria (LAB) inoculation and addition of cell wall degrading enzymes on the fermentation characteristics and chemical compositions of Italian ryegrass silage. An inoculant LAB with or without a cell wall degrading enzyme of Acremoniumcellulase (A), or Meicellulase (M) or a mixture of both (AM), was applied to 1 kg of fresh Italian ryegrass sample. The treatments were control untreated, LAB-treated (application rate $10^5$ cfu/g fresh sample), LAB+A 0.005%, LAB + A 0.01%, LAB+A 0.02%, LAB + M 0.005%, LAB + M 0.01%, LAB + M 0.02%, LAB+AM 0.005%, LAB + AM 0.01% and LAB+AM 0.02%. The sample was ensiled into 2-L vinyl bottle silo, with 9 silages of each treatment were made (a total of 99 silages). Three silages of each treatment were incubated at 20, 30 and $40{^{\circ}C}$ for an approximately 2-months storage period. All silages were well preserved as evidenced by their low pH values (3.79-4.20) and high lactic acid concentrations (7.71-11.34% DM). The fermentation quality and chemical composition of the control untreated and the LAB-treated silages were similar, except that for volatile basic nitrogen (VBN) content was lower (p < 0.05) in the LAB-treated silages. LAB + cellulase treatments improved the fermentation quality of silages by decreasing (p < 0.01) pH values and increasing (p<0.01) lactic acid concentrations, in all of cellulase types and incubation temperatures. Increasing amount of cellulase addition resulted in further decrease (p < 0.01) of pH value and increases (p < 0.01) of lactic acid and residual water soluble carbohydrate (WSC) concentrations. LAB + cellulase treatments reduced (p<0.01) NDF, ADF, hemicellulose and cellulose contents of silages compared with both the control untreated and LAB-treated silages. LAB + cellulase treatments did not affect the silage digestibility due to fact of in vitro dry matter digestibility (IVDMD) was similar in all silages. The silages treated with cellulase A resulted in a better fermentation quality and a higher rate of cell wall reduction losses than those of the silages treated with cellulases M and AM. Incubation temperature of $30{^{\circ}C}$ seemed to be more suitable for the fermentation of Italian ryegrass silages than those of 20 and $40{^{\circ}C}$.

Development and Characterization of an Anti-Acne Gel Containing Siamese Crocodile (Crocodylus siamensis) Leukocyte Extract

  • Phupiewkham, Weeraya;Lu, Qiumin;Payoungkiattikun, Wisarut;Temsiripong, Threeranan;Jangpromma, Nisachon;Lai, Ren;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.707-717
    • /
    • 2018
  • Leukocytes are reportedly the first line of the innate immune defense and essential for the control of common bacterial infections. Therefore, in this work, the antibacterial activity of crocodile leukocyte extract against Propionibacterium acnes was evaluated, and we also characterized the related activity of skin infection. The leukocyte extract showed the minimum inhibitory concentration to be $100{\mu}g/ml$ to P. acnes. SEM imaging demonstrated that the leukocyte extract adversely affected P. acnes cell permeability in a concentration-dependent manner. Furthermore, the crocodile leukocyte extract could significantly reduce proinflammatory markers and decrease inflammatory signs in infected mouse ears. The crude leukocyte extract was further purified using FPLC and RP-HPLC. The resulting fraction F5 was indicated as the anti-acne peptide-containing fraction. The molecular mass of the peptide contained in F5 was calculated to be 4,790.5 Da. N-Terminal sequencing revealed the amino acid sequence as GPEPVPAIYQ, which displays similarities to immunoglobulin A and leucine-rich repeat neuronal protein. This is the first reported amino acid sequence of a crocodile leukocyte extract that possesses anti-acne activity. To attempt to use it in a prototype cosmetic, an anti-acne gel containing crude crocodile leukocyte extract was formulated, resulting in seven gel formulations (G1, G2, G3, G4, G5, G6, and G7). The formulations G5, G6, and G7 exhibited 2-fold higher anti-acne activity than G1-G4. Investigation of accelerating stability studies of anti-acne gel formulations G5, G6, and G7 demonstrated that a low storage temperature ($4^{\circ}C$) is suitable for maintaining the physical properties and biological activity of the anti-acne gel products.