• Title/Summary/Keyword: low temperature heating

Search Result 963, Processing Time 0.035 seconds

Application of an Infrared Drying to Drying Process for Red Pepper (고추의 건조(乾燥) 공정(工程)에서 적외선(赤外線) 건조법(乾燥法)의 활용(活用)에 관한 연구(硏究))

  • Koh, H.K.;Cho, Y.J.;Kang, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.230-243
    • /
    • 1990
  • This study was conducted to investigate the possibility of application of an infrared drying to drying process for red pepper. The performance of seramic heaters and the variation of temperature and moisture content of red pepper were analyzed during an infrared drying of red peppers. Also, the quality of dried red pepper was analyzed. The following results were obtained from this study. 1. The surface temperature of infrared heaters and the rising time required for steady state were mainly affected by electrical power consumed. 2. The heat energy required for heating red pepper was proposed to be calculated by the equation in terms of enthalpy of air and net heat flux by infrared heater in a drying chamber. The statistical model for net heat flux was developed. 3. The performance of the infrared heater used for heating red pepper was much affected by the distance of radiation, and the difference of temperatures appeared between the radiated surface and the inside of red pepper. 4. Electrical capacity of the infrared heater had a significant effect on the heating of red pepper. However, the effect of shape of heater on heating was not significant. 5. The variation of temperature of red pepper largely appeared in the range of 30 to 60% (db) in moisture content. The temperature of red pepper was almost constant at low moisture content. 6. The temperature of red pepper and heating time had significant effects on the quality for radiant heating. 7. When the electrical capacity of infrared heater and the distance of radiation are carefully designed in a dryer with the insulated drying chamber, infrared drying might be very effective in red pepper drying.

  • PDF

Experimental Study on Internal Temperature Change Induced by Heating Element Attached to Tunnel Lining Surface (터널 라이닝 표면에 부착된 발열체로 인한 내부 온도 변화의 실험적 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2017
  • The rearside of concrete lining of tunnels constructed in cold region might experience on freezing due to the low temperature. This causes damage of concrete lining resulting in adverse affect on the durability as well as integrity of tunnel structure by causing damage to the concrete lining. In order to prevent the rearside of tunnel lining from freeing, the temperature change inside the concrete lining was measured by attaching a heating element to the tunnel lining surface and generating heat for a certain period of time. A special freezing chamber was developed to conduct the experiments considering in-situ environment. The carbone nanotube (CNT) was used as a heating element in this study. The temperature distribution of the concrete lining was measured by applying the heat to the heating element. The effect of the outside temperature and heating duration were analyzed.

Studies on Heat Stability of Egg Albumen Gel 1. Effects of Heating Time and Temperature, PH and NaCl Concentration on Heat Stability of Egg Albumen Gel (난백겔의 열안정성에 관한 연구 1, 가열온도와 시간, pH 및 NaCl농도가 난백겔의 열안정성에 미치는 영향)

  • 유익종;김창한;한석현;송계원
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • This study was undertaken to find out the effect of heating time and temperature, pH and NaCl concentration on the heat stability of egg albumen gel during heat treatment. With the transient decrease at 110-$130^{\circ}C$, hardness of heat-set albumen gel was increased as the heating temperature increased. The cohesiveness showed similar trend as well. The lightness was decreased while the yellowness was increased as the heating time and temperature increased. Heat-set albumen gel showed maximum hardness at pH 4.5-5.0 and pH 9.0 High heat treatment($120^{\circ}C$, 30min) showed higher hardness at alkaline range compared to low heat treatment($96^{\circ}C$, 30min.). Color of the albumen gel was relatively dark at acidic range and bright at alkaline range. High heat treatment caused darker albumen gel at alkaline range and brighter albumen gel at acidic range. The addition of NaCl increased hardness and cohesiveness of the albumen gel and improved the lightness after high heat treatment regardless of NaCl concentration.

  • PDF

Effect of Moisture Migration in Concrete with Hating Rate on Concrete Spalling (가열속도에 따른 콘크리트 내부의 수분이동이 폭렬발생에 미치는 영향)

  • Choe, Gyeong-Cheol;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Hong-Seop;Yoon, Min-Ho;Hwang, Ui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.246-247
    • /
    • 2017
  • In this study, it reviewed the effect of moisture migration in concrete with heating rate on concrete spalling. Concrete specimens with compressive strength 30MPa and 110MPa are used and its size is □100×100×h200mm. And, two kinds of heating rate are set such as IS0 834 and 1℃/min. As a result, in the concrete specimen exposed to ISO 834 standard heating condition, moisture could migrate through pore network and surface concrete pieces fall out by generating moisture clog near the surface in 110MPa concrete specimen. Meanwhile, In the case of concrete specimens exposed to 1℃/min. heating condition, it is appeared that moisture could not migrate because temperature is distributed uniformly. Therefore, surface spalling is not occurred with low heating rate. However, in the case of 110MPa concrete specimen is exploded even though it heated by low heating rate.

  • PDF

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

Optimization of the Area Ratio of Regeneration to Dehumidification and Rotor Speed on the Condition of Low Regeneration Temperature (재생온도가 저온인 경우 제습로터의 재생부/제습부 면적비율과 회전속도 최적화)

  • Chung, Jae-Dong;Lee, Dae-Young;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.521-528
    • /
    • 2007
  • The desiccant rotor is the most essential component of desiccant cooling system, but its design relies on manufacturer's experience and principles are not yet clear in spite of a lot of theoretical/experimental work published. The mathematical modeling of desiccant rotor needs solution of coupled partial differential equations of heat and mass transfer. In this study, numerical program is developed and validated using a real desiccant rotor. The calculation results are in reasonable agreement with the experimental data and other available numerical results. Optimization of desiccant rotor on the condition of low regeneration temperature are investigated. The optimal rotor speed at which the process outlet humidity becomes minimized, shows same as that of the system optimization. Compared to high regeneration temperature, broad is the range of optimal speed of low regeneration temperature. Systematic analysis on the optimal area ratio of regeneration to dehumidification section has also been conducted.

Study on Deterioration of Domestic Edible Oils Upon Heating at High Temperatures (시판식용유(市販食用油)의 고온연속가열(高溫連續加熱)에 따르는 경시적(經時的) 변화(變化)에 관(關)한 연구(硏究))

  • Oh, Young-Bok;Kim, Kwang-Ho
    • Journal of Nutrition and Health
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 1978
  • A study was planned to evaluate the influence of continual heating at $150{\pm}5^{\circ}C$ and $170{\pm}5^{\circ}C$ respectively upon edible oils for frying the several food. Two kinds of domestic edible oils (Sample A and B) were collected by random sampling from market and in order to estimate deterioration degrees at both temperatures previously mentioned, thiobarbituric acid (TBA) value, acid value (AV), peroxide value (POV) and carbonyl value (CV) were measured at intervals due to its optical density. Those values were examined and compared according to the temperatures and times, and it was concluded as follows: 1) TBA value was rapidly increased until 24 hours in both temperatures and after 1 day its value have shown a slower increase as compared with initial rapid reaction. 2) Acid value and peroxide value of both oils (A & B) used for frying were increased continuously during heating and the changes in these values were dependent on the thermal oxidation, and moreover at low temperature $(150{\pm}5^{\circ}C)$ these values were found to be increased more readily than at high temperature $(170{\pm}5^{\circ}C)$. 3) Carbonyl value of both sample A and B show almost the same increasing rate at either $150{\pm}5^{\circ}C$ or $170{\pm}5^{\circ}C$ in proportion to the heating time. 4) It was found that there were differences between the chemical changes caused by heating sample A and B at high and low temperature.

  • PDF

Physicochemical Properties of Freeze-dried Corn Starch Sponge Matrix (동결 건조된 옥수수 전분 스펀지 매트릭스의 이화학적 특성)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Yong;Lee, Kye-Heui;Yoon, Taek-Joon;Yang, Sung-Bum;Lee, Seog-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.419-427
    • /
    • 2010
  • The focus of the current study was to investigate the physicochemical properties of a corn starch-sponge matrix prepared at a low concentration below gel forming by freeze-drying. The effect of variables(starch concentration, heating temperature, and heating hold time) on the physicochemical properties of the samples was analyzed by response-surface methodology. Regression models on the properties of samples such as hardness, springiness, and water solubility index(WSI) showed high correlation coefficients(r>0.95) and significant F values, but regression models for the other properties(swelling power, apparent viscosity, reducing sugar content, and digestibility) showed them to have relatively low significance. Sample hardness of sample showed the highest value at condition of $90^{\circ}C$ and 5%, whereas springiness was at a maximum at $130^{\circ}C$ and 5%. Also, at 1% of starch concentration, mechanical properties were greatly decreased as the relative humidity increased, compared with the 3% and 5%, especially in the hardness of samples. The WSI showed an increasing trend with heating temperature regardless of starch concentration. Overall, the physicochemical properties of freeze-dried corn starch-sponge matrix were influenced much more by starch concentration and heating temperature than by heating hold time. The results of this study show that the basic properties of freeze-dried corn starch-sponge matrix can be used for the specific food applications or as a functional material for its stability.

Natural Convection in a Rectangular Enclosure with Localized Heating from Below (사각공간내에서의 부분바닥가열에 의한 자연대류에 관한 연구)

  • Han, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.287-297
    • /
    • 1995
  • In this study, the geometry consists of a two-dimensional rectangular enclosure with localized heating from below. The size and the location of the heater on the floor has been varied, and one of the vertical walls remains at a low temperature simulating a cold window. The governing equations for momentum, energy and continuity, which are coupled with turbulent equations have been solved using a finite volume method. A low Reynolds number $k-{\varepsilon}$ model has been incorporated to solve the turbulent kinetic energy and the dissipation rate. The heat transfer characteristics and the thermal environmental characteristics of the room have been obtained for various system parameters in a room with a partially heated floor.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.