• 제목/요약/키워드: low speed maneuver

검색결과 19건 처리시간 0.03초

On the 3-dimensional low speed yo-yo maneuver

  • Takano, Hiroyuki;Sato, Masaya;Baba, Yoriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.653-658
    • /
    • 1994
  • This paper presents numerical analyses of the low speed yo-yo maneuver of an aircraft to determine controls of thrust, bank-angle and angle-of-attack in the subsonic region in terms of the optimal control theory. Minimum-time flight paths are numerically calculated to overtake an opponent aircraft flying in some steady-state level turnings under several assumptions: both of aircraft are point masses and maneuver in the 3-Dimensional space. Their weights are considered constant in the maneuver. As a result of the analyses, the effectiveness of the low speed yo-yo maneuver is shown.

  • PDF

A Study on Development of Laptop-Based Pilots' Ship-Handling Simulation Software

  • Jeong, Tae-Gwoen;Chen, Chao;Lee, Shin-Geol;Lee, Jeong-Jin;Huh, Yong-Bum
    • 한국항해항만학회지
    • /
    • 제36권7호
    • /
    • pp.571-575
    • /
    • 2012
  • Berthing and unberthing maneuver is essential work for marine pilots and securing the safety against risks during the maneuver is more important than anything else. Moreover, the maneuvering environment in ports and harbors has changed rapidly and got worse due to development of a new port, the advent of a new type or large-sized ship, and the rapid increase in harbor traffic. As one of measures taken to cope with such changes in the maneuvering environment and for each pilot to improve his own maneuvering ability, this paper developed laptop-based ship-handling simulator which is readily available anytime and anywhere. This paper is to develop a conning display for ship's maneuvering and electronic chart based display widely used nowadays to represent a model ship's movement. The displays were arranged appropriately considering pilot age, easy handling by mouse, using a maximum screen, proper arrangement of rudder, engine, thruster, tug etc and representation of information. Up to now thirteen (13) model ships were developed based on real-ship, whose mathematical model is Japanese MMG & pilots' low speed maneuver.

소형비행기 가로안정성 향상 및 적합성검증 방안 연구 (Study on the lateral stability improvement and compliance verification)

  • 최주원;김찬조;정훈화;김진수
    • 항공우주시스템공학회지
    • /
    • 제7권2호
    • /
    • pp.23-28
    • /
    • 2013
  • This is a research on the method of how to improve lateral stability for the small general aviation airplane to meet the FAR part 23 requirements. This research is based on the experience of certification flight tests of KC-100 airplane for Korea first type certification. KAS/FAR Part 23.177 is the static lateral and directional stability requirement. And, 23.177(b) requires to show the tendency to raise the low wing in steady heading side slip maneuver. However, it is very difficult for the low wing to be raised at the low speed during the steady heading side slip maneuver. So, the requirement allows not be negative at the $1.2V_{S1}$ speed and takeoff configuration. (static stability requirement requires low wing picked up at any speed except $1.2V_{S1}$ speed and takeoff configuration) In this paper, the static lateral stability requirements and the lessons & learned of KC-100 airplane certification flight test results are shown.

다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발 (A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows)

  • 장현호;백승걸;박재범
    • 대한교통학회지
    • /
    • 제22권4호
    • /
    • pp.147-158
    • /
    • 2004
  • SWP(Stochastic Wave Propagation: 확률파장전파) 모형은 Cellular Automata(CA) 이론을 기반으로한 간략한 차량모형을 이용하여 개별차량의 확률적 형태와 혼잡의 전파를 모사하고, 통계물리학을 기반으로 교통류를 거시적으로 해석한다. SWP모형은 이산적 시공간 구조와 정수형 자료를 이용한 프로그램 지향적 모형구조를 가지며 연산수행속도가 빨라 대규모 가로망의 실시간 시뮬레이션을 가능하게 하였다. 그러나 비현실적인 충돌회피과정으로 인한 자연발생적 혼잡(Spontaneous jam)의 형성 때문에 미시적으로는 혼잡내에서 잠금현상(Lockup)이 발생하여 혼잡내 차량의 저속을 설명할 수 없고, 거시적으로는 혼잡의 밀도와 전파속도를 설명하기 어렵다는 한계를 가지고 있다. 본 연구에서는 비현실적인 차량의 정지과정을 보다 현실적으로 모사하기 위한 정지조작규칙(SMR: Stopping Maneuver Rule)과 혼잡내에서 차량의 낮은 가속을 설명하기 위한 저가속규칙(LAR: Low Acceleration Rule)을 기존의 SWP모형인 NaSch모형에 추가하였다. 이를 통해 미시적으로 보다 현실적인 차량의 정지과정을 모사하면서 혼잡내에서 잠금현상을 방지하고, 거시적으로 혼잡의 밀도와 전파속도를 설명함으로써 보다 다양하게 연속 교통류를 구현하는 모형을 구축하였다.

Performance Analysis of a Flow Passage Opening Device through Low Speed Aircraft Captive Flight Tests

  • Jung, Sung-Min;Park, Jeong-Bae
    • International Journal of Aerospace System Engineering
    • /
    • 제4권2호
    • /
    • pp.5-9
    • /
    • 2017
  • In a pressurized fuel supply system of aircraft, a flow passage opening device is required to keep fuel continuously transferred from one tank to the other. The device utilizes balancing weights in order to follow up an acceleration at special conditions such as negative g. It is very difficult to test the device in a real high-speed and high-altitude test since severe test conditions and expensive supports are needed. Therefore, this paper deals with performance analysis of a flow passage opening device through low speed aircraft captive flight tests (CFT) including roll and negative-g maneuvers. It is shown that balancing weights in the device can open the passage in accordance with fuel position.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Naknma, Yoshiyasu;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • 한국항해항만학회지
    • /
    • 제33권2호
    • /
    • pp.99-104
    • /
    • 2009
  • The Kinematic GPS is well known to provide a quite good accuracy of positioning within an level. Although kinematic GPS assures high precision measurement on the basis of an appreciable distance between a reference station and an observational point, it has measurable distance restriction within 20 km from a reference station on land. Therefore, it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction In this paper, the velocity integration method to get the precise velocity information of a ship is explained. The experimental results of Zig-zag maneuver and Williamson turn as the ship's maneuvering test, and other experimental results of ship's movement during leaving and entering the port with low speed were shown. From the experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

퍼지로직을 이용한 차량절대속도 추정 (Absolute Vehicle Speed Estimation using Fuzzy Logic)

  • 송철기;황진권
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.179-186
    • /
    • 2002
  • The absolute longitudinal speed of a vehicle is estimated by using vehicle acceleration data from an accelerometer and wheel speed data from standard 50-tooth antiknock braking system wheel speed sensors. An intuitive solution to this problem is, "When wheel slip is low, calculate absolute velocities from the wheel speeds; when wheel slip is high, calculate absolute velocity by integrating the accelerometer." Fuzzy logic is introduced to implement the above idea and a new algorithm of "modified velocities with step integration" is proposed. This algorithm is verified experimentally to estimate speed of a vehicle, and is also shown to estimate absolute longitudinal vehicle speed with a 6% worst-case error during a hard braking maneuver lasting three seconds.

도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석 (Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application)

  • 최만수;최혜원;이창민;최현준
    • 신재생에너지
    • /
    • 제16권2호
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.