• Title/Summary/Keyword: low rotational speed

Search Result 164, Processing Time 0.024 seconds

Analysis of Red Pepper Calyx Cutting Using a Rotational Cutter (회전날을 이용한 홍고추의 꼭지 절단 경향 분석)

  • 이승규;송대빈;정의권
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.209-216
    • /
    • 2003
  • Red pepper calyx cutting devices using a impacting force by a rotational cutter were devised and tested to obtain the fundamental data for development of a calyx removal unit. Fresh red peppers with 80∼87%(w.b.) of initial moisture contents were used as experimental materials. Square and wire type of rotational cutters were used to cut the red pepper calyx and the fresh red peppers were fed into the device both manually and automatically. Three rotational speeds of 250, 500, 700rpm were selected for a square, and 1000, 1500, 1800rpm for a wire type cutter respectively. Four types of red pepper fixing unit were used in manual feeding. The cutting rate of the square type cutter was over 50% regardless the shape and specification of the cutter. For the wire type cutter, the copper wire and nylon chord could not be applied to cut the red pepper calyx because of the low cutting rate. But for the fine wire, the cutting rate was higher and the cutting mechanism was more steady than copper wire and nylon chord. The cutting rate of automatic feeding and wire type cutting unit was about 70% for all levels of the rotational speed. The cutting rate was highly related to the impacting point of red pepper in carrier box. To increase the cutting rate using the rotational cutter, a proper device and mechanism was required to keep the impacting point consistently.

Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application (고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

SIMULATION OF AUTOMOTIVE SEAT FOR REDUCING NECK INJURY IN LOW-SPEED REAR IMPACT

  • CRO H. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.161-169
    • /
    • 2005
  • Neck injuries sustained during low speed rear impact are the most commonly sustained traffic injury. Therefore, the analysis of neck injury mechanisms and methods for mitigating and reducing neck injuries during low speed rear impact are a very important issue in the vehicle safety field. In order to find a method to absorb the shock that is transmitted to the occupant, the response of frontal and rear dummy due to the motion of the struck vehicle and the rotational angular displacements of dummies' necks during rear impact at 12km/h speed were investigated using a Working Model 2D. The results suggest that the shock absorption system should be equipped in the bottom of the seat of the vehicle to reduce shock and mitigate neck injury to the occupants.

Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer (회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교)

  • Ji, Hye;Lim, Hyung Mi;Chang, Young-Wook;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

A Study on the Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump (극저비속도 원심펌프의 성능과 내부유동특성에 관한 연구)

  • Kurokawa Junichi;Lee Young-Ho;Choi Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.784-794
    • /
    • 2005
  • In the very low specific speed range ($n_s=0.24$ < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there expects to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increasese the slip factor with the reduction of theoretical head.

Design of Robust Servo Controller for Large Size Low Speed Diesel Engines (대형 저속 디젤기관의 속도제어를 위한 로바스트 서보 제어기 설계)

  • Jeong, Byeong-Geon;Yang, Ju-Ho;Byeon, Jeong-Hwan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.46-58
    • /
    • 1997
  • The energy saving is one of the most important factors for profit in marine transportation. In order to reduce the fuel oil consumtion the ship's propulsion efficiency must be increased as possible. The propulsion efficiency depends upon a combination of an engine and a propeller. The propeller has better efficiency as lower rotational speed. This situation led the engine manufacturers to design the engine that has low speed, long stroke and a small number of cylinders. Consequently, the variation of rotational torque became larger than before because of the longer delay-time in fuel oil injection process and an increased output per cylinder. As this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variation of the delay-time and the parameter perturbation. In this paper we consider the delay-time and the perturbation of engine parameters as the modeling uncetainties. Next we design the robust servo controller which has zero offset in steady state engine speed, based on H sub($\infty$) control theory. The validity of the controller was investigated through the response simulation. We used a personal computer and an analog computer as the digital controller and the engine (plant) part respectively. And, we could certify that the designed controller maintains its robust servo performance even though the engine parameters may vary.

  • PDF

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.

Development of Foil Journal Bearing for Turbo Machinery (터보기기용 포일 저널 베어링 개발)

  • Kim, Kyeong Su;Lee, Ki Ho;Kim, Seung Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.475-481
    • /
    • 2001
  • Foil bearings have been successfully used for small high speed rotors, such as ACM(Air Cycle Machine), turbo charger, turbo compressor, high speed motor, etc. Recently advanced researches are concentrated on the high load capacity and the extreme temperature foil bearings to extend the application boundary. Some bearings are already adopted into cryogenic machines and micro gas turbines. In this paper, a foil journal bearing designed for high load capacity, which is under development, is introduced. The bearing is for the turbo refrigerator which has a rotor of 18${\~}$25 kgf rotating at 23,000${\~}$38,000 rpm. This application is well beyond conventional spectrum of foil bearings because the rotor is relatively heavy and the rotational speed is low. Therefore, the development is challenging. The foil bearing is a bump type, the size is 60mm in diameter and 50mm in length, the operating fluid is air and rotational speed is 26,000 rpm. In-house software was developed and used for bearing design. Tested maximum load capacity is 80kgf, 0.62 in terms of load capacity coefficient, and testing is being continued.

  • PDF

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

Development of Normal-Opposite Rotational Durability Test Equipment for Large Sized Planetary Gear Box (대형 유성기어박스의 정역회전 내구성시험장치 개발에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.305-310
    • /
    • 2012
  • Planetary gear box is a power transmitter having very high gear ratio in compact volume. The planetary step-down gear box converts high speed and low torque into low speed and high torque, which is widely used in constructional and industrial machinery field. And, the planetary step-up gear box does vice versa working, which is used as main gear box of large sized wind mill system. The large sized planetary gear box must be performed the normal-opposite rotation test as a its durability test for achieving the reliability. The large sized planetary gear box is composed by triple gear trains of sun gear, carrier, and ring gear. If input power is supplied into one of them and the other is fixed, and then another becomes the output part. In this paper, we designed a new test equipment which can do rapid normal and opposite rotational change with only small displacement by supplying test power using the above rotation (driving) characteristics and hydraulic cylinder and link, and also compared and analyzed with existing method through various experiments.