• Title/Summary/Keyword: low power mode

Search Result 1,107, Processing Time 0.029 seconds

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

Buffer Cache Management for Low Power Consumption (저전력을 위한 버퍼 캐쉬 관리 기법)

  • Lee, Min;Seo, Eui-Seong;Lee, Joon-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.293-303
    • /
    • 2008
  • As the computing environment moves to the wireless and handheld system, the power efficiency is getting more important. That is the case especially in the embedded hand-held system and the power consumed by the memory system takes the second largest portion in overall. To save energy consumed in the memory system we can utilize low power mode of SDRAM. In the case of RDRAM, nap mode consumes less than 5% of the power consumed in active or standby mode. However hardware controller itself can't use this facility efficiently unless the operating system cooperates. In this paper we focus on how to minimize the number of active units of SDRAM. The operating system allocates its physical pages so that only a few units of SDRAM need to be activated and the unnecessary SDRAM can be put into nap mode. This work can be considered as a generalized and system-wide version of PAVM(Power-Aware Virtual Memory) research. We take all the physical memory into account, especially buffer cache, which takes an half of total memory usage on average. Because of the portion of buffer cache and its importance, PAVM approach cannot be robust without taking the buffer cache into account. In this paper, we analyze the RAM usage and propose power-aware page allocation policy. Especially the pages mapped into the process' address space and the buffer cache pages are considered. The relationship and interactions of these two kinds of pages are analyzed and exploited for energy saving.

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

Transformer-Reuse Reconfigurable Synchronous Boost Converter with 20 mV MPPT-Input, 88% Efficiency, and 37 mW Maximum Output Power

  • Im, Jong-Pil;Moon, Seung-Eon;Lyuh, Chun-Gi
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.654-664
    • /
    • 2016
  • This paper presents a transformer-based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)-input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer-based self-startup mode (TSM) and an inductor-based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a $0.18-{\mu}m$ CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.

A New Slip Power Recovery System by Switch Mode Converter (스위치모드 컨버터에 의한 새로운 슬립전력 회수시스템)

  • 박한웅;박성준;김철우;황영문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.73-81
    • /
    • 1999
  • A new slip power recovery system applying a switch mode converter to the rotor circuit of the wound rotor induction machine is proposed and investigated in this paper. With the analysis of the steady-state performances of the proposed system, it can be shown that the speed can be controlled by the duty ratio of the converter switch and the several characteristics of a conventional system can be also improved. In particular, the low power factor and the harmonic components in the line current, which are the main disadvantages of the conventional system, is significantly improved, and linear speed regulation can be obtained. Theoretical and experimental results are presented and illustrated to demonstrate the satisfactory working of the proposed system.

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어)

  • Jang, Ji-Seong;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

Use of Stored Energy in Rotor Inertia for LVRT of PMSG Wind turbine based on Sliding Mode Control (영구자석 동기발전기 시스템을 위한 회전자 관성에너지를 이용한 Sliding Mode제어 기반 LVRT 제어)

  • Jeong, Daeheon;Gui, Yonghao;Kim, Chunghun;Chung, Chung Choo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1058-1059
    • /
    • 2015
  • This paper describes a low-voltage ride-through method for the permanent magnet synchronous generator (PMSG) wind turbine system at a grid fault. The generator side converter regulates the DC link voltage instead of the grid side converter by storing the surplus active power in the rotor inertia during grid fault by the sliding mode controller. The grid side converter controls the grid active power keeping a maximum power point tracking. Simulation results for small scale PMSG wind turbine verify the efficiency of the control method.

  • PDF

Thickness-Vibration-Mode Piezoelectric Transformer for Power Converter

  • Su-Ho lee;Yoo, Ju-Hyun;Yoon, H.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.1-5
    • /
    • 2000
  • This paper presents a new sort of multilayer piezoelectric ceramic transformer for switching regulation power supplies. This piezoelectric transformer operate in the second thickness resonant vibration mode. Accordingly its resonant frequency is higher than 1 NHz, Because output power is low if input and output part of transformer are consisted of single layer, this research suggests a new method, which is consisted of both input and output part of transformer have 2-layered piezoelectric ceramics, The size of transformer is 20 mm in width and length, and 1.4 mm in thickness, respectively, To design a high efficient switching circuit of the transformer, internal circuit parameters were measured and then weve calculated a parameter of inductor nd capacitor to design a driving circuit, Weve used a MISFET and its driver circuit modified a calp oscillator circuit as the primary switching circuit.

  • PDF