• Title/Summary/Keyword: low oxygen pressure

Search Result 433, Processing Time 0.028 seconds

Effects on Exhaust Gas Emission in Combined EGR System of Gas Engine and Diesel Engine (가스엔진과 디젤엔진의 혼합 EGR시스템이 배기배출물에 미치는 영향)

  • Yoo, Dong-Hoon;Nishida, Osami;Lim, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.896-902
    • /
    • 2009
  • EGR is applied in order to lower temperature of combustion chamber by using the specific heat of carbon dioxide in engine exhaust gas. However, the problem of EGR system in diesel engine is high PM concentration. Combined EGR system can be reduced it by mixing exhaust gas of gas engine into the intake air of diesel engine. This experimental study was designed for EGR system for both engines use. The results of EGR experimental study by using diesel engine and gas engine are as follows. 1) The pressure of combustion and rate of heat release decreased. 2) The specific fuel consumption increased. But, up to middle load, it little increased. 3) NO concentration has decreased up to 50% in almost all combustion area. 4) The variation of the PM concentration at low load is not so seen. But at high load, PM increased rapidly when concentration of oxygen is decreased and most of it caused the increasing of Dry Soot.

A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process (LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구)

  • 강현욱;권현옥;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Changes in Respiratory Function Due to Differences in Mask Blocking Grade and Effects on Cardiovascular Function during Aerobic Exercise with Mask

  • Park, Kwanghyeon;Lee, Sangyeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.289-296
    • /
    • 2021
  • Objective: The purpose of this study was to changes in respiratory function due to differences in mask blocking grade, and effects on cardiovascular function during aerobic exercise. Design: Comparative study using paired t-test and analysis of variance measures. Methods: Male and female subjects were randomly divided into 4 groups according to mask blocking grade and measured respiratory functions before and after wearing the mask using spirometers, and their cardiovascular capabilities were measured using pulse oxygen meters and blood pressure meters before and after running for 10 minutes wearing mask. Used paired t-test, one-way ANOVA and Bonferroni post-test to compare the differences according to the mask blocking grade. Results: The experimental results verified that three groups except for the Non-mask group had a significant reduction in all values of FVC, FEV1, MVV, and PEF after wearing a mask compared to those before wearing a mask(p<0.05). Also a significant difference in cardiovascular functions was also observed after aerobic exercises wearing mask in all groups and there was a significant difference between all four groups(p<0.05). Conclusions: Lung patients with poor breathing, elderly and children with poor lung function, and professional groups who need to wear masks and take high-intensity work or aerobic movements are encouraged to take frequent breaks in advance, wear masks and social distancing at moderate and low levels.

Electrical properties of n-ZnO/p-Si heterojunction photovoltaic devices

  • Kang, Ji Hoon;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.306.1-306.1
    • /
    • 2016
  • ZnO semiconductor material has been widely utilized in various applications in semiconductor device technology owing to its unique electrical and optical features. It is a promising as solar cell material, because of its low cost, n-type conductivity and wide direct band gap. In this work ZnO/Si heterojunctions were fabricated by using pulsed laser deposition. Vacuum chamber was evacuated to a base pressure of approximately $2{\times}10^{-6}Torr$. ZnO thin films were grown on p-Si (100) substrate at oxygen partial pressure from 5mTorr to 40mTorr. Growth temperature of ZnO thin films was set to 773K. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnO target, whose density of laser energy was $10J/cm^2$. Thickness of all the thin films of ZnO was about 300nm. The optical property was characterized by photoluminescence and crystallinity of ZnO was analyzed by X-ray diffraction. For fabrication ZnO/Si heterojunction diodes, indium metal and Al grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. Finally, current-voltage characteristics of the ZnO/Si structure were studied by using Keithly 2600. Under Air Mass 1.5 Global solar simulator with an irradiation intensity of $100mW/cm^2$, the electrical properties of ZnO/Si heterojunction photovoltaic devices were analyzed.

  • PDF

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

Studies on the Improvement of Pressurized Quality for High Maneuver Aircraft by Characteristic Analysis of Anti-G Valve (Anti-G 밸브 특성 분석을 통한 고기동 항공기 여압기능 개선연구)

  • Lee, Heerang;Ahn, Jongmoo;Jeong, Wonyeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.230-236
    • /
    • 2018
  • This paper deals with the improvement of pressurized quality for high maneuver aircraft. Anti-G Valve is a pressure regulating valve for inflating anti-G suits and providing a sense line signal for a g-compensated oxygen regulator. The new anti-g valve system is satisfied with military specification MIL-V-87255 and allowed the pilots to tolerate high-G exposures without any vibrations. The flight test was performed by two T/FA-50 pilots and other tests used the centrifuge made by anti-g developer. A comparison of the new anti-g valve with period one, it have better response and low chattering phenomenon.

The Effects of Resting Physical Factors on Distance and Intensity of Six-Minute Walk Test in Healthy Female Subjects

  • Kang, Dong-Yeon;Lee, Hye Young
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.5
    • /
    • pp.281-286
    • /
    • 2017
  • Purpose: The purpose of this study was to examine the correlations among the resting physical factors related to a six-minute walk test (6MWT) and to determine the effects of the resting physical factors on the distance and intensity related to the 6MWT in healthy female subjects. Methods: A total of 43 healthy female subjects ($22.84{\pm}3.90yrs$) participated in this study. They performed the 6MWT, and the physical factors related to the 6MWT were assessed. SPSS 20.0 was used to analyze the data, and the mean and standard deviation were calculated, and the collected data were analyzed by the Pearson's correlation coefficient (among physical factors related to 6MWT) and independent t-test (between six-minute walk distance [6MWD] groups and six-minute walk intensity [6MWI] groups). Results: The 6MWD had a significant negative correlation with the resting HR (beat/min) in healthy female subjects (r=-0.49, p<0.05). The 6MWI had a significant negative correlation with the resting systolic blood pressure (SBP) (r=-0.45, p<0.01). A comparison of the 6MWD revealed the long distance group (LDG, 700-799 m) to be significantly higher than the middle distance group (MDG, 600-699 m) in the 6MWI (%), %predicted distance (%), predicted VO2max (mL/kg/min), resting HR (beat/min), and resting SBP (mmHg)(p<0.05). In the comparison of 6MWI, the moderate intensity group (MIG, 64-75%HRmax) was significantly lower than the low intensity group (LIG, 50-63%HRmax) in the resting SBP (mmHg) (p<0.05). Conclusion: These results suggest that the resting physical factors are related to the 6MWD and 6MWI of the 6MWT in healthy females. In particular, SBP is associated with not only the 6MWD but also the 6MWI in 6MWT.

Comparison of the anesthetic effects of 2,2,2-tribromoethanol on ICR mice derived from three different sources

  • Lee, Mi Ree;Suh, Hye Rin;Kim, Myeong Whan;Cho, Joon Young;Song, Hyun Keun;Jung, Young Suk;Hwang, Dae Youn;Kim, Kil Soo
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.270-278
    • /
    • 2018
  • This study was conducted to compare the anesthetic effects of 2,2,2-tribromoethanol (TBE, $Avertin^{(R)}$) in ICR mice obtained from three different sources. TBE (2.5%) was intraperitoneally injected at three doses: high-dose group (500 mg/kg), intermediate-dose group (250 mg/kg), and low-dose group (125 mg/kg). Anesthesia time, recovery time, end-tidal peak $CO_2$ ($ETCO_2$), mean arterial blood pressure, heart rate, oxygen saturation ($SpO_2$), body temperature, pH, $PCO_2$, and $PO_2$ of the arterial blood were measured. Stable anesthesia was induced by all doses of TBE and the anesthesia time was maintained exhibited dose dependency. No significant differences in anesthetic duration were found among the three different strains. However, the anesthesia time was longer in female than in male mice, and the duration of anesthesia was significantly longer in female than in male mice in the high-dose group. The recovery time was significantly longer for female than male mice in the intermediate- and high-dose groups. In the ICR strains tested, there were no significant differences in the mean arterial blood pressure, $SPO_2$, arterial blood $PCO_2$, and $PO_2$, which decreased after TBE anesthesia, or in heart rate and $ETCO_2$, which increased after TBE anesthesia. In addition, body temperature, blood biochemical markers, and histopathological changes of the liver, kidney, and lung were not significantly changed by TBE anesthesia. These results suggested that ICR mice from different sources exhibited similar overall responses to a single exposure to TBE anesthesia. In conclusion, TBE is a useful drug that can induce similar anesthetic effects in three different strains of ICR mice.

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

The Sintering Behavior of the Hyperstoichiometric Uranium Dioxide in the Oxidative Atmosphere (약 산화성 분위기 중에서의 과산화성 2산화 우라늄의 소결에 관한 연구)

  • Jang Keu Han;Won Ku Park;Han Su Kim
    • Nuclear Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1983
  • The slightly hyperstoichiometric uranium dioxide, i.e. U $O_{2.005}$ and U $O_{2.01}$ within a range of the requirement for the use of a nuclear fuel, were sintered directly in an atmosphere of $CO_2$/CO mixture without any succeeding reduction process. The kinetics of sintering in the late stage were investigated for various O/U ratios. A sintering diagram, which show the relation of Temperature-Time-Density-Grain size, was established for each O/U ratio. Only by controlling the oxygen partial pressure in the sintering atmosphere, U $O_2$ pellet could be sintered very easily at low temperature 1050$^{\circ}$~120$0^{\circ}C$ with a density above 95% T.D. and average grain size above 7${\mu}{\textrm}{m}$. It was found that the rate of grain growth follows D=(Kt)$^{1}$4/ in the late stage of sintering. And the activation energies for grain growth in the final sintering stage were found to be 75, 64 and 62kca1/mo1 for U $O_{2.005}$, U $O_{2.01}$ and U $O_{2.10}$, respectively. Although no significant differences are obtained between the activation energies for different O/U ratios, the sinterability is enhanced considerably with increasing the oxygen partial pressure in the sintering atmosphere.tmosphere.

  • PDF