• Title/Summary/Keyword: low loading

Search Result 1,586, Processing Time 0.025 seconds

Fatigue Evaluation for the Socket Weld in Nuclear Power Plants

  • Choi, Young Hwan;Choi, Sun Yeong;Huh, Nam Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.216-221
    • /
    • 2004
  • The operating experience showed that the fatigue is one of the major piping failure mechanisms in nuclear power plants (NPPs). The pressure and/or temperature loading transients, the vibration, and the mechanical cyclic loading during the plant operation may induce the fatigue failure in the nuclear piping. Recently, many fatigue piping failure occurred at the socket weld area have been widely reported. Many failure cases showed that the gap requirement between the pipe and fitting in the socket weld was not satisfied though the ASME Code Sec. III requires 1/16 inch gap in the socket weld. The ASME Code OM also limits the vibration level of the piping system, but some failure cases showed the limitation was not satisfied during the plant operation. In this paper, the fatigue behavior of the socket weld in the nuclear piping was estimated by using the three dimensional finite element method. The results are as follows. (1) The socket weld is susceptible to the vibration if the vibration levels exceed the requirement in the ASME Code OM. (2) The effect of the pressure or temperature transient load on the socket weld in NPPs is not significant because of the very low frequency of the transient during the plant lifetime operation. (3) 'No gap' is very risky to the socket weld integrity for the specific systems having the vibration condition to exceed the requirement in the ASME OM Code and/or the transient loading condition. (4) The reduction of the weld leg size from $1.09*t_1$ to $0.75*t_1$ can affect severely on the socket weld integrity.

Adaptive OFDMA with Partial CSI for Downlink Underwater Acoustic Communications

  • Zhang, Yuzhi;Huang, Yi;Wan, Lei;Zhou, Shengli;Shen, Xiaohong;Wang, Haiyan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.387-396
    • /
    • 2016
  • Multiuser communication has been an important research area of underwater acoustic communications and networking. This paper studies the use of adaptive orthogonal frequency-division multiple access (OFDMA) in a downlink scenario, where a central node sends data to multiple distributed nodes simultaneously. In practical implementations, the instantaneous channel state information (CSI) cannot be perfectly known by the central node in time-varying underwater acoustic (UWA) channels, due to the long propagation delays resulting from the low sound speed. In this paper, we explore the CSI feedback for resource allocation. An adaptive power-bit loading algorithm is presented, which assigns subcarriers to different users and allocates power and bits to each subcarrier, aiming to minimize the bit error rate (BER) under power and throughput constraints. Simulation results show considerable performance gains due to adaptive subcarrier allocation and further improvement through power and bit loading, as compared to the non-adaptive interleave subcarrier allocation scheme. In a lake experiment, channel feedback reduction is implemented through subcarrier clustering and uniform quantization. Although the performance gains are not as large as expected, experiment results confirm that adaptive subcarrier allocation schemes based on delayed channel feedback or long term statistics outperform the interleave subcarrier allocation scheme.

The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading (하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.583-589
    • /
    • 2012
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (Municipal Solid Waste) and SS (Sewage Sludge) through the change of heat and atmospheric pollutants. In this study, LHV (Low Heating Value) is 100~300 kcal/kg because the MC (Moisture Content) of de-hydrated sewage sludge is approximately 80%. From the results, we knew the feasibility of co-incineration for MSW (80%) and SS (20%). As the co-incineration rate of SS up to 20% became higher, the loading of heat and atmospheric pollutants was not influenced.

Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals (다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동)

  • Yoo, Jaeseok;Xian, Guo;Lee, Myungjin;Kim, Yongdeok;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur (황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거)

  • Kim, Dae-young;Moon, Jin-young;Baek, Jin-uk;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

Morphological variables restrict flower choice of Lycaenid butterfly species: implication for pollination and conservation

  • Mukherjee, Subha Shankar;Hossain, Asif
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Background: Butterflies make an important part for plant-pollinator guild. These are nectar feeder or occasionally pollen feeder and thus proboscis of the butterfly species are considered as one of the most important variable in relation to the collection of food from plants. In butterfly-plant association, nectar source is principally determined by quality of nectar, corolla length, and nectar quantity. For the butterfly, nectar uptake is determined by proboscis length because flowers with long corolla restrict butterfly species containing shorter proboscis. Empirical studies proved that butterfly species with high wing loading visit clustered flowers and species with low wing loading confined their visit to solitary or less nectar rich flowers. The present study tries to investigate the flower preference of butterfly species from Lycaenidae family having very short proboscis, lower body length, lower body weight and wing span than the most species belonging from Nymphalidae, Pieridae, Papilionidae, and Hesperiidae. Results: Butterflies with shorter proboscis cannot access nectar from deeper flower. Although they mainly visit on less deeper flower to sucking nectar, butterflies with high wing loading visits clustered flowers to fulfill their energy requirements. In this study, we demonstrated flower choice of seven butterfly species belonging to Lycanidiae family. The proboscis length maintains a positive relationship with body length and body weight. Body length maintains a positive relationship with body weight and wing span. Wing span indicate a strong positive relationship with body weight. This study proved that these seven butterfly species namely Castalius rosimon (CRN), Taracus nara (TNA), Zizinia otis (ZOT), Zizula hylax (ZHY), Jamides celeno (JCE), Chilades laius (CLA), and Psuedozizeeria maha (PMA) visit frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) and Syndrella nodiflora (SNO). The species do not visit Lantana camara (LCA) and Catharanthus roseus (CRO) plants. Conclusion: The present study proved that butterfly species visits frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) but less frequently in Syndrella nodiflora (SNO). So, that study determined the butterfly species helps in pollination of these herbs that in turn helps the conservation of these butterfly species.

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

Selective Adsorption of Si(IV) onto Hydrotalcite from Alkali Leaching Solution of Black Dross (블랙드로스 알칼리 침출용액으로부터 hydrotalcite에 의한 규소(IV)의 선택적 흡착)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.54-61
    • /
    • 2019
  • In order to recover pure alumina from black dross, leaching of mechanically activated black dross with NaOH solution resulted in an aluminate solution containing a small amount of Si(IV). Selective adsorption of Si(IV) onto hydrotalcite was investigated from 5 M NaOH solution where the concentration of Al(III) and Si(IV) was 13000 and 150 mg/L, respectively. Only Si(IV) was selectively loaded onto hydrotalcite, while Al(III) remained in the solution. Effect of the calcination treatment of hydrotalcite and concentration of calcined hydrotalcite and NaOH on the loading of Si(IV) was investigated. Although the loading percentage of Si(IV) was low from 5 M NaOH solution, most of the Si(IV) was removed by adjusting the concentration of NaOH by 48 times dilution with water when the concentration of calcined hydrotalcite was higher than 4.5 g/L. The loading of Si(IV) onto calcined hydrotalcite followed Freundlich adsorption isotherm.

A Comparative Study on 3D Data Performance in Mobile Web Browsers in 4G and 5G Environments

  • Nam, Duckkyoun;Lee, Daehyeon;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.8-19
    • /
    • 2019
  • Since their emergence in 2007, smart phones have advanced up to the point that 5G mobile communication in 2019 started to be commercialized. Accordingly, now it is possible to share 3D modeling files and collaborate by means of a mobile web. As the recently commercialized 5G mobile communication network is so useful in sharing 3D modeling files and collaborating that even large-size geometry files can be transmitted at ultra high speed with ultra low transfer delay. We examines characteristics of major 3D file formats such as STL, OBJ, FBX, and glTF and compares the existing 4G LTE (Long Term Evolution) network with the 5G NR (New Radio) mobile communication network. The loading time and packets of each format were measured depending on the mobile web browser environments. We shows that in comparison with 4G LTE, the loading time of STL and OBJ file formats were reduced as much as 6.55 sec and 9.41 sec, respectively in the 5G NR and Chrome browsers. The glTF file format showed the most efficient performance in all of the 4G/5G mobile communication networks, Chrome, and Edge browsers. In the case of STL and OBJ, the traffic was relatively excessive in 5G NR and Edge browsers. The findings of this study are expected to be utilized to develop a 3D file format that reduces the loading time in a mobile web environment.

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.