• Title/Summary/Keyword: low loading

Search Result 1,572, Processing Time 0.027 seconds

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

Effects of Flexural Modulus and Fiber Bridging on the Interlaminar Fracture Energy of Multidirectional Composite Laminates under High Rate Loading (고속하중을 받는 다방향복합적층판의 층간파괴에너지에 미치는 굽힘탄성계수와 섬유가교의 효과)

  • ;A.J.Kinloch
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.40-53
    • /
    • 1999
  • The interlaminar facture behavior of multidirectional carbon-fiber/epoxy composite laminates under low and high rates of test, up to rate of about 11.4m/s has been investigated using the double cantilever beam specimens. The mode I loasing with rates above 1.0m/s had considerable dynamic effects on the load-time curves and thus revealed higher values of the average crack velocity than thet expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Flexural modulus increased gradually with an increase of the test rate, which was utilized in the evaluation of $G_{IC}$. Values of $G_{IC}$ at the crack initiation and arrest were scarcely changed with increasing test rate up to 1.0m/s. However the maximum $G_{IC}$ was much enlarged at 11.4m/s due to the large amount of fiber bridging the crack tip. The larger the initial crack length, the smaller the maximum $G_{IC}$ at high rate.

  • PDF

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

The Treatment of Slurry-type Swine Waste using UASB Reactor (UASB 공정에 의한 슬러리형 돈사폐수의 처리)

  • Won, Chul-Hee;Kim, Byoung-Ug;Han, Dong-Joon;Rim, Jay-Myoung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.583-588
    • /
    • 2004
  • This research examined the treatment efficiency and methane production rate in treating slurry-type swine waste using UASB (upflow anaerobic sludge blanket) reactor. The UASB reactor was operated at an organics volumetric loading rate (VLR) of $2.6-15.7kgCOD/m^3/day$. A stepwise increase of the VLR resulted in a temporary deterioration in the COD removal rate in UASB reactor but recovered quickly. The COD removal rate were 65-70% for VLR up to $5 kgCOD/m^3/day$. When organics VLR was $10kgCOD/m^3/day$, the COD removal rate decreased sharply and there was loss of 17.537g of the seeding biomass due to sludge washout. This result indicated that the UASB system cannot be adapted to more than $10kgCOD/m^3/day$ of VLR. As the organic load increased from 2.6 to $15.7kgCOD/m^3/d$, the biogas production rate varied from 3.2 to 10.8 L/d and the methane conversion rate of the organic matter varied from 0.30 to $0.23m^3CH_4/kg\;COD_{removed}$. The methane content showed the range of 70.1-81.5% during the experimental period. The volatile solids (VS) removal efficiency was similar at the low VLR (< $5 kgCOD/m^3/day$), but it decreased sharply at the high VLR (> $5 kgCOD/m^3/day$). The VS reduction rate was, moreover, large those of COD. The result shows that hydraulic retention time above 2 days is essential in case of treating wastewater containing 1% of solids.

The Effect of Specimen Thickness on the Fatigue Crack Propagation Rate (피로크랙전파율에 대한 시험편 두께의 영향)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 1988
  • The paper presents the preliminary results of an esperimental study on crack growth under tension-tension fatigue loading. A purpose of the study is to find the effect of the specimen thickness on crack propagation behaviors. The thickness of the low catbon steel specimens the are used in the experiments are 5, 10, 15,20, and 25 mm. the type of specimen considering in the present study is compact tension specimen.Crack growth behaviors are obseved and measured by travelling microscope. From the study, the followings are found; 1. There is a certain specimen thickness that is the shortest farigue life. The fatigue life of 15mm specimen is the shorter then that of any other opecimen 2. The crack initiation of the thick specimen is slower than that of thin specimen. But the crack propagation rate is just the opposite. 3. The range which is the exponent, m of power law(paris) is 1.98-4.59. the thicker the spec-imen is, the higher the value of m is.

  • PDF

Development of a vaccine automation injection system for flatfish using a template matching (템플릿 매칭을 이용한 넙치용 백신자동접종시스템 개발)

  • Lee, Dong-Gil;Yang, Young-Su;Park, Seong-Wook;Cha, Bong-Jin;Xu, Guo-Cheng;Kim, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.165-173
    • /
    • 2012
  • Nationally, flatfish vaccination has been performed manually, and is a laborious and time-consuming procedure with low accuracy. The handling requirement also makes it prone to contamination. With a view to eliminating these drawbacks, we designed an automatic vaccine system in which the injection is delivered by a Cartesian coordinate robot guided by a vision system. The automatic vaccine injection system is driven by an injection site location algorithm that uses a template-matching technique. The proposed algorithm was designed to derive the time and possible angles of injection by comparing a search area with a template. The algorithm is able to vaccinate various sizes of flatfish, even when they are loaded at different angles. We validated the performance of the proposed algorithm by analyzing the injection error under randomly generated loading angles. The proposed algorithm allowed an injection rate of 2000 per hour on average. Vaccination of flatfish with a body length of up to 500mm was possible, even when the orientation of the fish was random. The injection errors in various sizes of flatfish were very small, ranging from 0 to 0.6mm.

M-dephanox Process with Rotating Biological Contactor (RBC) in Nitirification Reactor (회전원판형 질화조를 이용한 M-dephanox 공정)

  • Kim, Keum-Yong;Kang, Min-Koo;Shin, Gwan-Woo;Kang, Jung-Kyu;Shin, Min-Su;Kang, Han-Sol;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was focused on improving nitrification efficiencies of M-dephanox (Modified-Dephanox) process. Rotating biological contactor (RBC) was used instead of floating sponge type media in nitrification reactor. High ammonia removal efficiencies were observed in nitrification reactor, regardless of organic loading from contactor of M-dephanox process. Denitrification efficiencies were also increased to maintain low $NO_3-N$ concentration in effluent. This enhanced phosphate release in anaerobic contactor and resulted in high removal efficiencies of phophorus. Average removal efficiencies of $TCOD_{Cr}$ and $SCOD_{Cr}$ were 93.8% and 81.6%, respectively, while those of TKN and ${NH_4}^+-N$ were 80.9% and 74.4%, respectively. As for phosphorous treatment, the average removal efficiencies of TP and OP were 94.7% and 94.3%, respectively. Also, effect of operating temperature on nitrogen removal was examined. Average removal efficiency of TN was 65.8 % at $15^{\circ}C$ or below (at average temperature of $13.3^{\circ}C$), while that was 82.8% at $15^{\circ}C$ or above (at average temperature of $21.9^{\circ}C$).

Nitrate Removal of Flue Gas Desulfurization Wastewater by Autotrophic Denitrification

  • Liu, L.H.;Zhou, H.D.;Koenig, A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.46-52
    • /
    • 2007
  • As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.

  • PDF

Evaluation on Radioactive Waste Disposal Amount of Kori Unit 1 Reactor Vessel Considering Cutting and Packaging Methods (고리 1호기 원자로 압력용기 절단과 포장 방법에 따른 처분 물량 산정)

  • Choi, Yujeong;Lee, Seong-Cheol;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.123-134
    • /
    • 2016
  • Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation.

Characterization of V/TiO2 Catalysts for Selective Reduction (V/TiO2 촉매의 선택적 촉매 환원 반응특성 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.512-518
    • /
    • 2008
  • The present work studied the selective catalytic reduction (SCR) of NO to $N_2$ by $NH_3$ over $V/TiO_2$ focusing on NOx control for the stationary sources. The SCR process depends mainly on the catalyst performance. The reaction characteristics of SCR with $V/TiO_2$ catalysts were closely examined at low and high temperature. In addition, adsorption and desorption characteristics of the reactants on the catalyst surface were investigated with ammonia. Seven different $TiO_2$ supports containing the same loading of vanadia were packed in a fixed bed reactor respectively. The interaction between $TiO_2$ and vanadia would form various non-stoichiometric vanadium oxides, and showed different reaction activities. There were optimum calcination temperatures for each samples, indicating different reactivity. It was finally found from the $NH_3-TPD$ test that the SCR activity was nothing to do with $NH_3$ adsorption amount.