• 제목/요약/키워드: low level lead exposure

검색결과 34건 처리시간 0.019초

7H-Dibenzo [c,g] carbazole과 Dibenz[a,j] acridine에 의한 DNA adduct의 32P-postlabeling 분석 (32P-postlabeling Analysis of 7H-Dibenzo [c,g] carbazole and Dibenz [a,j] acridine DNA Adduct in Mice)

  • 노재훈;문영한;데이비드 봐르쇼브스키;글렌 탈라스카
    • 한국산업보건학회지
    • /
    • 제3권1호
    • /
    • pp.14-21
    • /
    • 1993
  • 7H-dibenzo[c,g]carbazole(DBC)과 dibenz[a, j]acridine(DBA) 및 이의 대사물 trans-DBA-1,2-dihydrodiol(DBA-1,2-DHD), trans-DBA-3,4-dihydrodiol(DBA-3,4-DHD), trans-DBA-5,6-dihydrodiol(DBA-5,6-DHD)]에 의한 DNA adduct형성을 알기 위해 Hsd:ISR 생쥐 피부에 이를 투여하고 용매 추출법으로 DNA를 분리하고 $^{32}P$-postlabeling법으로 DNA adduct를 분석하였다. DBC를 피부에 투여하여 DNA adduct가 국소작용 부위인 피부와 내장기관인 간, 폐 및 신장에 형성되어 DBC는 국소 및 전신 발암작용이 있음을 알 수 있었다. 또한 DNA adduct활성도가 간에서는 높고 피부, 폐, 신장에서는 상대적으로 낮아 DBC에 의한 발암의 주 표적 장기는 간임을 추측할 수 있었다. DBA, DBA-3,4-DHD 및 DBA-5,6-DHD 투여에 의해 두개의 adduct가 피부에서 관찰되었다. 대사 물질인 DBA-5,6-DHD에 의해 2개의 adduct가 형성되었으나 그 양상이 DBA 및 DBA-3,4-DHD와는 달랐으며 DBA-1,2-DHD에 의해서는 DNA adduct 형성이 관찰되지 않았다. 이상의 결과로 DBA는 국소발암작용이 있으며 활성 대사물인 DBA-3,4-DHD가 최종 발암원(ultimate carcinogen)이고 DBA-1,2-DHD는 무독화 대사물질로 추측된다.

  • PDF

용접흄 충 금속함량 변화에 관한 연구 (A Study on the Content Variation of Metals in Welding Fumes)

  • 윤충식;박동욱;박두용
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

다년생 근채류 중 중금속 모니터링 및 위해성평가 (Monitoring and Risk Assessment of Heavy Metals in Perennial Root Vegetables)

  • 조민자;최훈;김혜정;윤혜정
    • 한국환경농학회지
    • /
    • 제35권1호
    • /
    • pp.55-61
    • /
    • 2016
  • 다년생 근채류인 인삼, 산양삼, 더덕, 도라지의 중금속 함량 실태조사를 통해 우리나라 국민의 식품 섭취로 인한 중금속 노출수준에 따른 위해성을 평가하였으며, 이를 위해 총 214건을 수거하였다. 근채류 중 납, 카드뮴 및 비소 함량분석을 위해 microwave장치를 이용해 전처리한 후 ICP/MS로 측정하는 시험법을 확립하였다. 중금속의 검출한계는 0.010~0.050 μg/kg이었으며 정량한계는 0.035~0.175 μg/kg이었다. 표준용액 첨가법과 CRM을 이용하여 회수율을 실험한 결과, 76~102%의 양호한 결과를 얻었다. 다년생 근채류 중 납 함량은 평균 0.013(인삼)~0.070(산양삼) mg/kg이었고, 카드뮴 함량은 평균 0.009(인삼)~0.034(더덕) mg/kg이었으며 비소 함량은 평균 0.002(인삼)~0.004(도라지) mg/kg이었다. 다년생 근채류 섭취에 따른 중금속 위해성 평가를 수행한 결과, 중금속 노출량은 각각 Pb 0.070 μg/day, Cd 0.041 μg/day, As 0.008 μg/day으로 인체섭취한계량의 0.03%, 0.08%, 0.0003% 수준이었다. 따라서, 국내 유통되는 인삼, 산양삼, 더덕 및 도라지 섭취로 인한 중금속 노출수준은 JECFA 등의 인체노출안전기준보다 매우 낮았으며 우리나라 국민은 다년생 근채류에 존재하는 중금속의 위해성으로부터 안전하였다.

Environment Parameters Affecting Heavy Metal Concentration in Sand Collected from Children Playground in Seoul Metropolitan Area

  • An, Hyunsun;Kim, Juhee;Hyun, Seunghun
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.193-202
    • /
    • 2013
  • The concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), and arsenic (As) in sand samples collected from selected children's playground and their correlation with environmental parameters, such as concentration of particulate matter in the atmosphere ($PM_{10}$), apartment age (> 5 years), clay and organic matter contents in sand samples, were analyzed. The average heavy metal concentration in samples was 0.040 mg $kg^{-1}$ for Cd, 0.200 mg $kg^{-1}$ for Cr, 1.75 mg $kg^{-1}$ for Cu, 15.1 mg $kg^{-1}$ for Ni, 3.42 mg $kg^{-1}$ for Pb, 66.7 mg $kg^{-1}$ for Zn and 0.750 mg $kg^{-1}$ for As, all of which were below the environmental regulatory level established by Korea Ministry of Environment. However, in the consideration of direct and oral exposure by children to playground sand, the risk of the concentration range in the samples might be greatly enhanced. Heavy metal concentration in samples collected from high $PM_{10}$ (> $70{\mu}gm^{-3}$) area was slightly greater than in samples from low $PM_{10}$ (< $70{\mu}gm^{-3}$), indicating the contribution of particulate matter in air phase to heavy metal concentration in playground sand samples. The concentrations of both Cd and Pb were the highest in apartments older than 21 years (0.050 mg $kg^{-1}$ and 5.28 mg $kg^{-1}$ for Cd and Pb respectively) and showed positive correlation with apartment age (p<0.01 and p<0.001 for Cd and Pb, respectively). Clay content in playground sands ranged 3.8~11.2% and was positively correlated with heavy metal concentration. Organic matter content was negligible (mostly < 0.1%) and showed poor correlation with heavy metal concentration. In conclusion, concentration of heavy metals in playground sand was found to be predominantly influenced by the apartment age and clay content in sand samples and supplemented by dust deposition of particulate matter ($PM_{10}$) from atmosphere.