• Title/Summary/Keyword: low head hydropower

Search Result 24, Processing Time 0.034 seconds

A Study on Darrieus-type Hydroturbine toward Utilization of Extra-Low Head Natural Flow Streams

  • Tanaka, Kei;Hirowatari, Kotaro;Shimokawa, Kai;Watanabe, Satoshi;Matsushita, Daisuke;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.152-159
    • /
    • 2013
  • A two-dimensional Darrieus-type hydroturbine system, installed with a wear for flow streams such as small rivers and waterways, has been developed for hydropower utilization of extra-low head less than 2m. There are several problems such as flow rate change and flowing wastes to be solved for its practical use in natural flow streams. In the present study, at first, a design guideline in the case of overflow or bypass flow is shown by using simple flow model. Next, in order to avoid the unexpected obstacles flowing into the hydroturbine, an installation of waste screening system is examined. It is confirmed that the screen is effective with some amount of bypass flow rate, however the output power is remarkably deteriorated.

Experimental and Numerical Investigations on Performances of Darriues-type Hydro Turbine with Inlet Nozzle

  • Matsushita, Daisuke;Tanaka, Kei;Watanabe, Satoshi;OKuma, Kusuo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.151-159
    • /
    • 2014
  • Low head hydropower is one of realistic renewable energies. The Darrieus-type hydro turbine with an inlet nozzle is available for such low head conditions because of its simple structure with easy maintenance. Experimental and numerical studies are carried out in order to examine the effects of gap distances between the runner pitch circle and two edges of inlet nozzle on turbine performances. By selecting narrower gaps of left and right edges, the performance could be improved. From the results of two dimensional numerical simulations, the relation between the performance and flow behaviors around the Darrieus blade are discussed to obtain the guideline of appropriate inlet nozzle design.

Analysis of Hydraulics Power according to Changable Design Conditions for Francis Turbines (프란시스 수차의 설계조건 변동에 따른 수력학적 해석)

  • Choi, J.S.;Kim, I.S.;Moon, C.J.;Kim, O.S.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.690-692
    • /
    • 2005
  • Among many other alternative energy resources, small scale hydropower has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Present low head of Francis turbines and small scale hydro turbines, however, have limitations in the minimum required head and flow rate for efficient operation. This study attempts to develope the Francis turbine which is expected to run efficiently even in very low head and small flow rate, so that the limitations on the conventional small scale hydropower could be alleviated and competition with other alternative energy sources in the changable design conditions could be attained. The Francis turbine of a new concept was designed based on changable design conditions, hydrodynamics and theory of power transmission.

  • PDF

Analysis of Hydraulics Power Characteristics According to Changable Design Conditions for Francis Turbines (프란시스 터어빈의 설계조건 변동에 따른 수력학적 특성해석)

  • Kim, O.S.;Choi, J.S.;Kim, I.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.39-43
    • /
    • 2005
  • Among many other alternative energy resources, small scale hydropower has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Present low head of Francis turbines and small scale hydroturbines, however, have limitations in the minimum required head and flow rate for efficient operation. This study attempts to develope the Francis turbine which is expected to run efficiently even in very low head and small flow rate, so that the limitations on the conventional small scale hydropower could alleviated and competition with other alternative energy sources in the changable design conditions could attained. The Francis turbine of a new concept was designed based on changable design conditions, hydrodynamics and theory of power transmission. The result of the study shows that two stages runner is more efficient, cheaper in construction, faster responding, and easier maintaining than single stage runner of Francis turbine

  • PDF

Simplification of Turbine Structure and Performance Improvement of Micro Cross-Flow Hydropower Turbine (마이크로 관류수차의 구조 간소화 및 성능향상)

  • Kurokawa, Junichi;Choi, Young-Do;Zhao, Linhu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.819-824
    • /
    • 2005
  • Recently, micro hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not normalized yet in the range of micro hydropower and it is necessary to study for the effective turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the micro hydropower turbine. Therefore, a cross-flow turbine is proposed for micro-hydropower in this study because of its simple structure and high possibility of applying to low head. The purpose of this study is to further simplify the turbine structure and improve the performance, A guide vane is removed and the runner chamber is made compact using a new air supply method. The results show that the efficiency of the turbine is improved in a wide operating range and the size of the turbine is remarkably reduced.

  • PDF

A Study on the Optimal Configuration and Performance Improvement of a Micro Cross-Flow Hydraulic Turbine (마이크로 관류수차의 최적형상 및 성능향상에 관한 연구)

  • Zhao, Linhu;Lee, Young-Ho;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.296-303
    • /
    • 2006
  • Recently, micro hydropower attracts attention because of its clean. renewable and abundant energy resources to develop. However, suitable turbine type is not normalized yet in the range of micro hydropower and it is necessary to study for the effective turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the micro hydropower turbine. Therefore a cross-flow turbine is proposed for micro-hydropower in this study because of its simple structure and high possibility of applying to low head. The purpose of this study Is to further optimize the turbine structure and improve the performance. A guide vane is removed and the runner chamber is made compact using a new air supply method. The results show that the efficiency of the turbine is improved in a wide operating range and the size of the turbine is remarkably reduced.

A Study on the Development of a New Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 개발에 관한 연구)

  • Lee, Young-Ho;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.284-290
    • /
    • 2006
  • For the case of high head and critical low flow rate range of micro hydropower resources, it requires very low specific speed turbines which are lower than conventional impulse turbine's specific speed. In order to satisfy the request for very low specific speed turbine with high efficiency, a new positive displacement turbine is developed. The performance characteristics of the new turbine is tested and compared with a conventional impulse turbine, which is used for automatic water faucet system. The purpose of present study is to develop an high performance turbine that can be used to extract micro hydropower potential of a water supply system. The test results show that the positive displacement turbine is much more efficient than the conventional turbine and it can sustain high efficiency under the wide range of operating conditions. The pressure pulsations at the inlet and outlet of the positive displacement turbine can be considerably minimized by using simple pressure damper.

Performance Test of a Catapillar Track-Hydroturbine (무한궤도 수차의 성능시험)

  • Lee, Hyeon-Gu;Kim, Hyeon-Jin;Kim, Hyeon-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.237-243
    • /
    • 1996
  • Current low head and small scale hydroturbines have limitations in the minimum required head and flow rate for efficient operation. This study attempts to develop a new concept hydroturbine which is expected to run efficiently even in very low head and small flow rate, so that the limitations on the conventional small scale hydropower could be alleviated and competition with other alternative energy sources in the economic respect could be attained. A small scale catapillar track- hydroturbine was fabricated and the performance test was carried out in a water tunnel over the head range of H = 0.8 m ~ 1.26 m. The peak turbine efficiency was 41.3% at the speed ratio of 0.6, and the turbine loss was mostly due to the friction at the chain drive used for power transmission from the runner to the shafts. This type of turbine is expected to become competitive when some improvement in the power transmission mechanism is made.

CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed (극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구)

  • Choi, Young-Do;Son, Sung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

Internal Flow Analysis of a Tubular-type Small Hydroturbine by Runner Vane Angle

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1044-1050
    • /
    • 2008
  • Most of developed countries, the consumption of fossil fuels has been serious problems that cause serious environment pollution like acid rain, global warming. Also, we have faced that limitation fossil fuels will be exhausted. Currently, small hydropower attracts attention because of its small, clean, renewable, and abundant energy resources to develop. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Tubular-turbine among small hydraulic power generation can be used at low-head. The purpose of this study is to research turbine's efficiency due to runner vane angle using CFD analysis.