• 제목/요약/키워드: low depth of field

검색결과 312건 처리시간 0.035초

초등교사의 과학학습부진학생 지도경험에 관한 근거이론적 연구 (A Study on Elementary School Teachers' Experiences in Teaching Students with Low Achievement in Science based on Grounded Theory)

  • 강지훈
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제41권1호
    • /
    • pp.44-64
    • /
    • 2022
  • 본 연구는 근거이론 분석 방법을 바탕으로 초등교사의 과학학습부진학생 지도경험을 탐색하였다. 과학학습부진학생을 최근 3년 이내에 지도한 경험이 있고, 5년 이상의 현장 경험을 가진 교사 13명을 대상으로 과학학습부진학생 지도경험에 대한 자료가 이론적 포화상태에 도달할 때까지 심층면담과 분석을 진행하였다. 분석 결과는 다음과 같다. 첫째, 초등교사의 과학학습부진학생 지도경험은 119개의 개념과 41개의 하위범주 및 17개의 범주로 도출하였다. 도출된 범주들을 패러다임 모형에 근거하여 '과학학습부진학생 지도의 어려움'이라는 중심현상을 바탕으로 인과적 조건, 맥락적 조건, 중재적 조건, 작용/상호작용 전략 및 결과로 구조화하여 제시하였다. 둘째, 초등교사의 과학교과 학습부진학생 지도의 핵심범주는 '어려움을 극복하며 과학학습부진학생 지도하기'로 상정하였다. 그리고 핵심범주의 속성과 차원에 따라 과학학습부진학생을 지도하는 교사유형은 '현실타협형', '현실극복형', '현실수용형', '현실갈등형'의 네 유형으로 구분되었다. 셋째, 초등교사의 과학학습부진학생 지도경험을 교사-학교-교육청 차원의 교육공급자 측면과 학생-가정 차원의 교육수요자 측면으로 구분하여 본 연구의 결과를 요약하고 통합할 수 있는 상황모형을 제시하였다. 이러한 결과를 바탕으로 과학교과 부진학생 지도에 대한 교육적 시사점을 논하였다.

Conductivity Measurements of Submarine Sediments

  • Park, Chan-Hong;Lee, Seung-Hee;Shon, Ho-Woong
    • Journal of the korean society of oceanography
    • /
    • 제36권1호
    • /
    • pp.1-8
    • /
    • 2001
  • An in-situ four-electrode contact resistivity probe system was designed, and field-tested in submarine sediments. Seismic survey was also performed to support and compare the results of electric survey. The probe was designed to be driven to selected depths below the seafloor using a Vibracore system. The four insulated electrodes were, spaced equidistant across the wedge, were extended beyond the probe tip to minimize effects of sediment disturbance by the wedge insertion. In-situ measurements of resistivity were recorded on board by precision electronic equipment consisting of signal generators and processors, and by temperature-monitoring systems. Overall limits of Uncertainty at respective depths below the seafloor are up to ${\pm}$10 of the measured values. Best estimates of conductivity are considered to be ${\pm}$3 percent of the reported values. Resistivity measurements were made at six sites in carbonate sediments to a maximum depth of penetration of about 5 m. Average values of conductivity range between 0.88 and 1.21 mho/m. The results show the seabed is composed of alternating layers of relatively high-conductivity material (0.8 to 1.4 mho/m) in thicknesses of more or less one meter and layers about 30 cm thick having relatively low conductivities (0.4 to 0.8 mho/m).

  • PDF

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

적외선용 광학소자의 초정밀 절삭특성 (The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays)

  • 원종호;박원규;김주환;김건희
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION OF A CONCAVE RECEIVER OPERATING CHARACTERISTIC CURVE VIA GEOMETRIC PROGRAMMING

  • Lee, Kyeong-Eun;Lim, Johan
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.523-537
    • /
    • 2011
  • A receiver operating characteristic (ROC) curve plots the true positive rate of a classier against its false positive rate, both of which are accuracy measures of the classier. The ROC curve has several interesting geometrical properties, including concavity which is a necessary condition for a classier to be optimal. In this paper, we study the nonparametric maximum likelihood estimator (NPMLE) of a concave ROC curve and its modification to reduce bias. We characterize the NPMLE as a solution to a geometric programming, a special type of a mathematical optimization problem. We find that the NPMLE is close to the convex hull of the empirical ROC curve and, thus, has smaller variance but positive bias at a given false positive rate. To reduce the bias, we propose a modification of the NPMLE which minimizes the $L_1$ distance from the empirical ROC curve. We numerically compare the finite sample performance of three estimators, the empirical ROC curve, the NMPLE, and the modified NPMLE. Finally, we apply the estimators to estimating the optimal ROC curve of the variance-threshold classier to segment a low depth of field image and to finding a diagnostic tool with multiple tests for detection of hemophilia A carrier.

Si와 Ge의 초정밀 절삭특성 (The Characteristics of Ultra Precision Machining of Si and Ge)

  • 원종호;박상진;안병민;도철진;홍권희;김건희;유병주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.775-778
    • /
    • 2000
  • Single point diamond turning technique fur optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of cur research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm. and feed rate is small. The influence of depth of cut is very small.

  • PDF

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.

초정밀 가공기를 이용한 적외선 우주망원경용 렌즈의 절삭가공기술개발 (Ultra-precision Machining of Space Telescope IR Camera Lens)

  • 양순철;김건희;김효식;신현수;홍권희;유종신;김동락;박수종;남욱원
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.31-36
    • /
    • 2005
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are studied and regularities of machining process are drawn. Optical crystals have been known to more and more important applications in the field of modern optics. Ge is more brittle material of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of Ge and apply the SPDTM technique to the manufacturing of ultra precision optical components of Ge. As a result, the surface roughness is the best when cutting speed is 180m/min, feed rate is 2mm/min, depth of cut is $0.5{\mu}m$ and nose radius of tool is 0.8mm.

  • PDF

On the Possibility of Multiple ICP and Helicon Plasma for Large-area Processes

  • Lee, J.W.;An, Sang-Hyuk;Chang, Hong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.234.1-234.1
    • /
    • 2014
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance[ECR], Inductively Coupled Plasma[ICP], Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. Among them, Some researchers have been studied on multiple sources In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP), and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple source for large-area processes.

  • PDF

EPS 엔드밀 가공 시 표면 거칠기에 미치는 가공조건에 관한 연구 (A study on machining conditions on surface roughness in EPS End-milling)

  • 서금희;손민규;윤길상;고영배
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.46-50
    • /
    • 2017
  • EPS used in lost foam casting elastic modulus is extremely low. So it is necessary to derive machining conditions for effective cutting. Therefore this study were analyzed end-milling machining conditions to affecting the surface roughness of EPS foam. The machining conditions were set to depth, feed, and RPM at 3-level. And 18experimental conditions were derived using mixed orthogonal array. The most important condition for surface roughness is RPM. In addition, RPM machining condition range test that can realize surface roughness less than $10{\mu}m$ was performed. he range of RPM conditions is more than 15,000. However the range of RPM conditions is a condition that is difficult to use in actual field. In the future variance analysis and experiments are needed to derive the range of machining conditions available.